Wednesday, March 4

Clicker Questions

Applying the Squeeze Theorem

Calculate $\lim_{n\to\infty} \frac{(-1)^n + 2n + 3\cos 4n}{n}$.

A. 0	Two bounding sequences
B. 1	Since $(-1)^n$ is either -1 or 1, and $3\cos 4n$ is
C. 2	always between -3 and 3, the limit must lie
D. 3	between
E. 4	$\lim_{n \to \infty} rac{2n-4}{n}$ and $\lim_{n \to \infty} rac{2n+4}{n}$,
	both of which equal 2.

Will this problem send you to the hospital?

Evaluate $\lim_{n\to\infty} \frac{\ln n}{n^{1/9}}$.

- A. converges to 9
- B. diverges
- C. converges to 1/9
- D. converges to 1
- E. converges to 0

Using l'Hôpital's Rule

It suffices to calculate $\lim_{x\to\infty}\frac{\ln x}{x^{1/9}}$, which is an $\frac{\infty}{\infty}$ indeterminate form. Its limit is therefore equal to

$$\lim_{x \to \infty} \frac{(\ln x)'}{(x^{1/9})'} = \lim_{x \to \infty} \frac{1/x}{x^{-8/9}/9}$$
$$= \lim_{x \to \infty} \frac{9}{x^{1/9}} = 0.$$