Wednesday, March 4

Clicker Questions

Clicker Question 1

Applying the Squeeze Theorem

Calculate $\lim _{n \rightarrow \infty} \frac{(-1)^{n}+2 n+3 \cos 4 n}{n}$.
A. 0
B. 1
C. 2
D. 3
E. 4

Two bounding sequences

Since $(-1)^{n}$ is either -1 or 1 , and $3 \cos 4 n$ is always between -3 and 3 , the limit must lie between

$$
\lim _{n \rightarrow \infty} \frac{2 n-4}{n} \text { and } \lim _{n \rightarrow \infty} \frac{2 n+4}{n},
$$

both of which equal 2 .

Clicker Question 2

Will this problem send you to the hospital?

Evaluate $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{1 / 9}}$.
A. converges to 9
B. diverges
C. converges to $1 / 9$
D. converges to 1
E. converges to 0

Using l'Hôpital's Rule

It suffices to calculate $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{1 / 9}}$, which is an $\frac{\infty}{\infty}$ indeterminate form. Its limit is therefore equal to

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{(\ln x)^{\prime}}{\left(x^{1 / 9}\right)^{\prime}} & =\lim _{x \rightarrow \infty} \frac{1 / x}{x^{-8 / 9} / 9} \\
& =\lim _{x \rightarrow \infty} \frac{9}{x^{1 / 9}}=0 .
\end{aligned}
$$

