Problems 1-4 are short-answer questions: put a box around your final answer, but no credit will be given for the answer without the correct accompanying work.

1a. [$\mathbf{3} \mathbf{~ p t s}$] Four weights with mass $m_{1}=2, m_{2}=3, m_{3}=5$, and $m_{4}=6$ are placed at the points $P_{1}=(0,0), P_{2}=(-3,2), P_{3}=(1,-2)$, and $P_{4}=(4,2)$, respectively. Calculate the centre of mass of the system of four weights. Simplify your answer fully.

The centre of mass is given by

$$
\begin{aligned}
& \frac{2(0,0)+3(-3,2)+5(1,-2)+6(4,2)}{2+3+5+6} \\
& \quad=\frac{(0,0)+(-9,6)+(5,-10)+(24,12)}{16}=\frac{(20,8)}{16}=\left(\frac{5}{4}, \frac{1}{2}\right) .
\end{aligned}
$$

Grading scheme: points taken off for arithmetic errors, or for mistakes setting up the problem (not dividing by the total mass, switching the two coordinates, etc.)

1b. [$\mathbf{3} \mathbf{p t s}$] Evaluate $\int \frac{2 x+3}{x^{3}+x} d x$.
The denominator factors as $x^{3}+x=x\left(x^{2}+1\right)$, so we look for partial fractions of the form

$$
\frac{2 x+3}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1},
$$

or equivalently $2 x+3=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A$. We conclude that $A=3$ and $C=2$, which makes $B=-3$. Thus

$$
\begin{aligned}
\int \frac{2 x+3}{x^{3}+x} d x & =\int\left(\frac{3}{x}+\frac{-3 x+2}{x^{2}+1}\right) d x \\
& =3 \int \frac{1}{x} d x-\frac{3}{2} \int \frac{2 x}{x^{2}+1} d x+2 \int \frac{1}{x^{2}+1} d x \\
& =3 \ln |x|-\frac{3}{2} \ln \left|x^{2}+1\right|+2 \arctan x+C
\end{aligned}
$$

(The middle integral was done by the substitution $u=x^{2}+1$. Since $x^{2}+1$ is always positive, we can write $\left(x^{2}+1\right)$ instead of $\left|x^{2}+1\right|$ if we want.)

Grading scheme:

- 1 pt for setting up the correct partial fraction form
- 1 pt for correctly solving for the constants A, B, C
- 1 pt for correctly integrating whatever partial fraction was arrived at. (No points deducted for forgetting absolute value symbols or the $+C$.)

Problems 1-4 are short-answer questions: put a box around your final answer, but no credit will be given for the answer without the correct accompanying work.

2 a . [$\mathbf{3} \mathbf{~ p t s] ~ W r i t e ~ t h e ~ g e n e r a l ~ p a r t i a l ~ f r a c t i o n ~ f o r m ~ f o r ~}$

$$
\frac{3 x^{2}+2 x+1}{\left(x^{2}-1\right)^{3}\left(x^{3}-x^{2}+x\right)} .
$$

Do not find numerical values for the constants A, B, \ldots
The denominator factors as $\left(x^{2}-1\right)^{3}\left(x^{3}-x^{2}+x\right)=(x-1)^{3}(x+1)^{3} x\left(x^{2}-x+1\right)$, and $x^{2}-x+1$ is irreducible. Thus the general partial fraction form is

$$
\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}+\frac{D}{x+1}+\frac{E}{(x+1)^{2}}+\frac{F}{(x+1)^{3}}+\frac{G}{x}+\frac{H x+I}{x^{2}-x+1}
$$

(Of course the terms can come in any order, and the constants can be given any names.)

Grading scheme:

- 1 pt for correctly giving the two terms with denominators x and $x^{2}-x+1$
- 1 pt for having the set of other six denominators correct
- 1 pt for having only constants, not linear polynomials, in the other numerators

2b. [$\mathbf{3} \mathbf{~ p t s]}$ Determine whether the sequence limit

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{(-1)^{n}+4 \sin (7 n)+9 n}{n}}
$$

converges or diverges; if it converges, find its value.
Since $(-1)^{n}$ is always between -1 and 1 and $4 \sin (7 n)$ is always between -4 and 4 , the fraction inside the square root is always between $9-\frac{5}{n}$ and $9+\frac{5}{n}$. Since the two functions $9-\frac{5}{x}$ and $9+\frac{5}{x}$ both converge to 9 as $x \rightarrow \infty$, the two sequences $9-\frac{5}{n}$ and $9+\frac{5}{n}$ also converge to 9 as $n \rightarrow \infty$; by the Squeeze Theorem,

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n}+4 \sin (7 n)+9 n}{n}=9
$$

as well. Finally, since the function \sqrt{t} is continuous at $t=9$, we conclude that the given sequence does converge:

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{(-1)^{n}+4 \sin (7 n)+9 n}{n}}=\sqrt{9}=3 .
$$

(Alternatively, one can do the Squeeze Theorem argument directly on functions with square roots in them.)
Grading scheme: marks deducted for forgetting the square root in the final answer, for not justifying why certain limits (such as $\left.\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}\right)$ tend to 0 or why the Squeeze Theorem can be applied, or for using a comparison test to get the actual value of the limit.

Problems 1-4 are short-answer questions: put a box around your final answer, but no credit will be given for the answer without the correct accompanying work.

3a. [3 pts] Evaluate $\int\left(\sec ^{4} x \cdot \sqrt{\tan x}\right) d x$.
Since the power of $\sec x$ is even, we set $u=\tan x$, so that $d u=\sec ^{2} x d x$. We get

$$
\begin{aligned}
\int\left(\sec ^{4} x \cdot \sqrt{\tan x}\right) d x & =\int\left(\left(\tan ^{2} x+1\right) \cdot \sqrt{\tan x}\right) \sec ^{2} x d x \\
& =\int\left(u^{2}+1\right) \sqrt{u} d u \\
& =\int\left(u^{5 / 2}+u^{1 / 2}\right) d u \\
& =\frac{u^{7 / 2}}{7 / 2}+\frac{u^{3 / 2}}{3 / 2}+C=\frac{2(\tan x)^{7 / 2}}{7}+\frac{2(\tan x)^{3 / 2}}{3}+C .
\end{aligned}
$$

Grading scheme:

- 1 pt for choosing the correct substitution $u=\tan x$
- 1 pt for correctly converting the integral to the u variable
- 1 pt for correctly evaluating the u integral and returning to the x variable. (No points deducted for forgetting the $+C$.)

3b. [$\mathbf{3} \mathbf{p t s}$] Find the average value of the function

$$
f(x)=\sqrt{5+4 x-x^{2}}
$$

on the interval $2 \leq x \leq 2+\frac{\sqrt{3}}{2}$. You can leave your answer in calculator-ready form, but evaluate any values of trigonometric functions.

Completing the square, we have $5+4 x-x^{2}=9-(x-2)^{2}$, so we choose the substitution $x-2=3 \sin \theta$, so that $d x=3 \cos \theta d \theta$. When $x=2$, we have $\sin \theta=0$ and so $\theta=0$; when $x=2+\frac{3}{\sqrt{2}}$, we have $\sin \theta=\frac{1}{\sqrt{2}}$ and so $\theta=\frac{\pi}{4}$. The length of the interval is $\left(2+\frac{3}{\sqrt{2}}\right)-2=\frac{3}{\sqrt{2}}$, and so the average value is

$$
\begin{aligned}
\frac{1}{3 / \sqrt{2}} \int_{2}^{2+3 / \sqrt{2}} \sqrt{5+4 x-x^{2}} d x & =\frac{\sqrt{2}}{3} \int_{0}^{\pi / 4} \sqrt{9-3 \sin ^{2} \theta} \cos \theta \cdot 3 d \theta \\
& =\frac{\sqrt{2}}{3} \int_{0}^{\pi / 4} 9 \cos ^{2} \theta d \theta \\
& =3 \sqrt{2} \int_{0}^{\pi / 4} \frac{1}{2}(1+\cos (2 \theta)) d \theta \\
& \left.=\frac{3 \sqrt{2}}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)\right]_{0}^{\pi / 4} \\
& =\frac{3 \sqrt{2}}{2}\left(\frac{\pi}{4}+\frac{1}{2} \sin \frac{\pi}{2}\right)-0=\frac{3 \pi \sqrt{2}}{8}+\frac{3 \sqrt{2}}{4}
\end{aligned}
$$

Grading scheme:

- 1 pt for having the correct expression for the average value
- 1 pt for using the correct substitution $x-2=3 \sin \theta$ (in one step or with two successive substitutions)
- 1 pt for a correct evaluation of the integral

Problems 1-4 are short-answer questions: put a box around your final answer, but no credit will be given for the answer without the correct accompanying work.
4. [$\mathbf{3} \mathbf{~ p t s}$] Exactly one of these integrals diverges. Find the one that diverges, and explain why it diverges. (You don't have to say anything about the other two integrals.)
(a) $\int_{2}^{\infty} \frac{1}{x^{3 / 2}} d x$
(b) $\int_{0}^{3} \frac{1}{x^{2 / 3}} d x$
(c) $\int_{1}^{\pi / 2} \sec x \tan x d x$

The divergent integral is (c): The integrand is discontinuous at $x=\pi / 2$, so we calculate

$$
\left.\lim _{t \rightarrow \pi / 2-} \int_{1}^{t} \sec x \tan x d x=\lim _{t \rightarrow \pi / 2-}(\sec x]_{1}^{t}\right)=\lim _{t \rightarrow \pi / 2-}(\sec t-\sec 1)=\infty
$$

since $\sec t$ has a vertical asymptote at $t=\pi / 2$.
(You didn't have to say anything about (a) and (b), but just to check if you want, they converge to $\sqrt{2}$ and $3^{4 / 3}$, respectively.)
Grading scheme:

- 1 pt for writing down a correct definition (involving a limit) for at least one of the improper integrals
- 1 pt for correctly identifying (c) as the divergent integral
- 1 pt for correct justification that the integral in (c) is divergent

Problems 5-7 are long-answer: give complete arguments and explanations for all your calculationsanswers without justifications will not be marked.
5. Consider a lamina L, with density $\rho=7$, whose shape is the region under the graph of $y=\sec ^{2} x$ from $x=0$ to $x=\pi / 3$. (For both parts of this problem, you can leave your answer in calculatorready form, but evaluate any values of trigonometric functions.)
(a) [4 pts] Calculate M_{y}, the moment of the lamina L with respect to the y-axis.

Starting with integration by parts, we evaluate

$$
\begin{aligned}
M_{y} & =\rho \int_{a}^{b} x f(x) d x=7 \int_{0}^{\pi / 3} x \sec ^{2} x d x \\
& \left.=7(x \tan x]_{0}^{\pi / 3}-\int_{0}^{\pi / 3} \tan x d x\right) \\
& \left.=7\left(\frac{\pi}{3} \tan \frac{\pi}{3}-0-\ln |\sec x|\right]_{0}^{\pi / 3}\right) \\
& =7\left(\frac{\pi}{3} \sqrt{3}-\ln \left|\sec \frac{\pi}{3}\right|+\ln |\sec 0|\right) \\
& =7\left(\frac{\pi}{\sqrt{3}}-\ln 2\right)
\end{aligned}
$$

Grading scheme:

- 1 pt for including the density ρ
- 1 pt for correctly integrating by parts
- 1 pt for giving the right antiderivative for $\tan x$
- 1 pt for correctly evaluating the values of trigonometric functions. (No other simplification was necessary.)
(b) $[4 \mathbf{p t s}]$ You are given the following evaluations (you don't have to prove them):
$\int_{0}^{\pi / 3} \sec ^{2} x d x=\sqrt{3}, \quad \int_{0}^{\pi / 3} \sec ^{4} x d x=2 \sqrt{3}, \quad \int_{0}^{\pi / 3} \sec ^{6} x d x=\frac{24 \sqrt{3}}{5}$.
Using this information and your answer to part (a), find the centroid of the lamina L. (Be careful with the constants.)

The mass of the lamina is

$$
M=\rho \int_{a}^{b} f(x) d x=7 \int_{0}^{\pi / 3} \sec ^{2} x d x=7 \sqrt{3}
$$

while the moment with respect to the x-axis is

$$
M_{x}=\rho \int_{a}^{b} \frac{1}{2} f(x)^{2} d x=\frac{7}{2} \int_{0}^{\pi / 3} \sec ^{4} x d x=\frac{7}{2} \cdot 2 \sqrt{3}=7 \sqrt{3} .
$$

The centroid is therefore

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{M}, \frac{M_{x}}{M}\right)=\left(\frac{7(\pi / \sqrt{3}-\ln 2)}{7 \sqrt{3}}, \frac{7 \sqrt{3}}{7 \sqrt{3}}\right)=\left(\frac{\pi-\sqrt{3} \ln 2}{3}, 1\right) .
$$

Grading scheme:

- 1 pt for a correct evaluation of the mass M of the lamina (including the density)
- 1 pt for a correct evaluation of M_{x}
- 2 pts for assembling the above information into the centroid. (If mistakes were made in calculating M_{y}, M_{x}, or M, but the mistaken values were used correctly in the formula for the centroid, then these points are still awarded.)

6. Define $f(x)=\frac{x^{5}}{10}-\frac{x^{6}}{360}$. We are interested in approximating the integral $\int_{0}^{12} f(x) d x$.
(a) [3 pts] Write down the Simpson's Rule approximation to this integral, with $n=6$. Do not simplify your answer (but it should be in calculator-ready form, not containing " f ").

Since $\Delta x=\frac{12-0}{6}=2$, the answer is

$$
\begin{aligned}
& S_{6}=\frac{\Delta x}{3}(f(0)+4 f(2)+2 f(4)+4 f(6)+2 f(8)+4 f(10)+f(12)) \\
&=\frac{2}{3}\left\{0+4\left(\frac{2^{5}}{10}-\frac{2^{6}}{360}\right)+2\left(\frac{4^{5}}{10}-\frac{4^{6}}{360}\right)+\right. 4\left(\frac{6^{5}}{10}-\frac{6^{6}}{360}\right)+2\left(\frac{8^{5}}{10}-\frac{8^{6}}{360}\right) \\
&\left.+4\left(\frac{10^{5}}{10}-\frac{10^{6}}{360}\right)+\left(\frac{12^{5}}{10}-\frac{12^{6}}{360}\right)\right\}
\end{aligned}
$$

Grading scheme:

- 1 pt for the factor $\frac{\Delta x}{3}=\frac{2}{3}$
- 1 pt for the correct sequence of coefficients $(1) 4,2,4,2,4,$,
- 1 pt for correctly evaluating $f(x)$ at the points $x=0,2,4,6,8,10,12$
(b) [3 pts] Calculate the fourth derivative $f^{(4)}(x)$. Find the smallest number K such that $\left|f^{(4)}(x)\right| \leq K$ for all $0 \leq x \leq 12$.

The first four derivatives of f are $f^{\prime}(x)=\frac{x^{4}}{2}-\frac{x^{5}}{60}, f^{\prime \prime}(x)=2 x^{3}-\frac{x^{4}}{12}, f^{(3)}(x)=6 x^{2}-\frac{x^{3}}{3}$, and $f^{(4)}(x)=12 x-x^{2}$. This fourth derivative is a downward-pointing parabola whose global maximum is at its vertex $(6,36)$ (there are several ways to see this, including completing the square or using calculus to find where $12 x-x^{2}$ is increasing/decreasing). Furthermore, $12 x-x^{2}=x(12-x)$ is always nonnegative for $0 \leq x \leq 12$. Therefore $\left|f^{(4)}(x)\right|=\left|12 x-x^{2}\right|=12 x-x^{2} \leq 36$ for $0 \leq x \leq 12$, so we take $K=36$.
Grading scheme:

- 1 pt for correctly computing $f^{(4)}(x)$
- 1 pt for finding the right value of K (given whatever function was gotten for $f^{(4)}(x)$)
- 1 pt for correctly justifying why the value of K was correct (testing the critical point and the endpoints, or talking about where $f^{(4)}(x)$ is positive/negative, increasing/decreasing, or referring to an accurate graph)
(c) [2 pts] The error bound formula for Simpson's Rule is

$$
\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}
$$

In this problem, $a=0, b=12$, and $n=6$; with the value of K computed in part (b), this inequality becomes $\left|E_{S}\right| \leq 76.8$. Given this information, what are the smallest and largest possible values for $\int_{0}^{12} f(x) d x$? Assume that your answer to part (a) equals 35574.1.

The definition of E_{S} is the difference between the integral $\int_{0}^{12} f(x) d x$ and the Simpson's Rule approximation 35574.1. Consequently, the inequality $\left|E_{S}\right| \leq 76.8$ is saying that

$$
\left|\int_{0}^{12} f(x) d x-35574.1\right| \leq 76.8
$$

Therefore the integral $\int_{0}^{12} f(x) d x$ must be between $35574.1-76.8=35497.3$ and $35574.1+76.8=35650.9$.
Grading scheme:

- 1 pt for knowing what the range of possible values for the integral is, given the bound for $\left|E_{S}\right|$ and the value of the integral
- 1 pt for using the given upper bound for $\left|E_{S}\right|$ in the above step

7. The two parts of this problem concern differential equations, but are not otherwise related.
(a) [$\mathbf{3} \mathbf{p t s}]$ Find the general solution to the differential equation

$$
\frac{d y}{d x}=\frac{5^{x} y^{4}}{\ln y}
$$

(You may leave your answer in implicit form—you don't have to solve for y.)
Separating the variables, we get $\frac{\ln y}{y^{4}} d y=5^{x} d x$, or

$$
\int \frac{\ln y}{y^{4}} d y=\int 5^{x} d x=\frac{5^{x}}{\ln 5}+C .
$$

For the remaining integral, we use integration by parts with $u=\ln y$ and $d v=\frac{1}{y^{4}} d y$:

$$
\begin{aligned}
\int \frac{\ln y}{y^{4}} d y & =(\ln y)\left(-\frac{1}{3 y^{3}}\right)-\int-\frac{1}{3 y^{3}} \cdot \frac{1}{y} d y \\
& =-\frac{\ln y}{3 y^{3}}+\int \frac{1}{3 y^{4}} d y=-\frac{\ln y}{3 y^{3}}-\frac{1}{9 y^{3}}
\end{aligned}
$$

Therefore the final solution is $-\frac{\ln y}{3 y^{3}}-\frac{1}{9 y^{3}}=\frac{5^{x}}{\ln 5}+C$.
Grading scheme:

- 1 pt for correctly separating the variables
- 1 pt for correctly integrating the y side
- 1 pt for correctly integrating the x side

One point deducted for forgetting the $+C$ here, since the question specifically asked for the general form.
(b) [5 pts] Find a function $f(x)$ such that the graph of $y=f(x)$ has the following properties:
(a) it goes through the point $(2,-4)$;
(b) at every point (x, y) on the graph, the slope of the graph is $\frac{3 x^{2}+1}{y}$.

We need to solve the differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{y}$ with initial condition $y(2)=-4$. Separating variables gives $y d y=\left(3 x^{2}+1\right) d x$, or:

$$
\begin{aligned}
\int y d y & =\int\left(3 x^{2}+1\right) d x \\
\frac{y^{2}}{2} & =x^{3}+x+C
\end{aligned}
$$

We go ahead and solve for C right away, by plugging in $x=2$ and $y=-4$:

$$
\begin{aligned}
\frac{(-4)^{2}}{2} & =2^{3}+2+C \\
C & =\frac{16}{2}-10=-2
\end{aligned}
$$

Our equation is therefore

$$
\begin{aligned}
\frac{y^{2}}{2} & =x^{3}+x-2 \\
y & =-\sqrt{2 x^{3}+2 x-4}
\end{aligned}
$$

(Notice we take the negative square root to ensure that $y(2)=-4$.)
Grading scheme: in this problem, 1 pt was allocated to having the exact right answer. The other 4 pts were allocated to demonstrating the correct procedure, as follows

- 2 pts for separating the variables and integrating both sides
- 1 pt for finding the value of C using the initial value
- 1 pt for solving for y as a function of x

If the procedure was entirely correct, then 4 points should be earned even if multiple errors were made along the way.

