Math 220, Section 201 Homework #8 due Friday, March 22, 2002 at the beginning of class

Warm-Up Questions-do not hand in

- I. Suppose that $\lim_{x\to c^+} f(x)$ and $\lim_{x\to c^-} f(x)$ both exist but have different values. Prove that $\lim_{x\to c} f(x)$ does not exist.
- II. Lay, p. 178, #20.4(a)
- III. Lay, p. 178, #20.5(b)
- IV. Let P(x) be a polynomial. Prove that $\lim_{x\to c} P(x) = P(c)$ for every $c \in \mathbb{R}$. (You may assume that $\lim_{x\to c} x = c$ for every $c \in \mathbb{R}$.)
- V. Write down a function f(x) defined on [0, 2] such that $\lim_{x\to 1^-} f(x) = 3$, f(1) = 4, and $\lim_{x\to 1^+} f(x) = 5$.

March 22's quiz will be one of these five warm-up questions.

Homework Questions—hand these in

I. Lay, p. 178, #20.4(b)

II. Calculate each of the following limits (with justification) or explain why it doesn't ex-

ist.	(a) $\lim_{x \to 2} \frac{x^3 + 5}{x^2 + 2}$	(e) $\lim_{x \to 4+} \frac{\sqrt{x-2}}{x-4}$
	(b) $\lim_{x \to 2} \frac{x^3 - 8}{x^2 + 2}$	(f) $\lim_{x \to 0} \frac{3x}{ x }$
	(c) $\lim_{x \to 2} \frac{x^3 + 5}{x^2 - 4}$	(g) $\lim_{x \to 0^-} \frac{3x}{ x }$
	(d) $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}$	

- III. Let c be a real number, let D be an interval containing c, and let $f: D \to \mathbb{R}$ be a function on D.
 - (a) (Corollary 20.9) If $\lim_{x\to c} f(x)$ exists, prove that it is unique.
 - (b) (Theorem 20.10) Prove that $\lim_{x\to c} f(x)$ does not exist if and only if: there exists a sequence (s_n) with each $s_n \in D \setminus \{c\}$ such that (s_n) converges to c but $(f(s_n))$ is divergent. (Hint: Use Theorem 20.8 to help you. One implication should be easy.)

(continued on back of page)

IV. (a) Define a function $g : \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}; \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Prove that $\lim_{x\to c} g(x)$ does not exist for any $c \in \mathbb{R}$. (b) Define a function $h : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ by h(x) = xg(x) for all $x \in \mathbb{R}, x \neq 0$. Find, with proof, $\lim_{x\to 0} h(x)$.