
Math 220, Section 203
Solutions to Study Questions for Second Midterm

March 17, 2003
For problems I-IV, determine whether the statement is true or false. If true, provide a

proof; if false, provide a counterexample.

I. (D’Angelo and West, p. 288, #14.8) Let 〈x〉 be a sequence of real numbers.
(a) If 〈x〉 is unbounded, then 〈x〉 has no limit.
(b) If 〈x〉 is not monotone, then 〈x〉 has no limit.

(a) This is true—in fact it is exactly the contrapositive of problem VII, which we prove
below.

(b) This is false. The sequence (−1)n/n is not monotone, but it converges to 0.

II. (D’Angelo and West, p. 288, #14.9) Suppose that xn → L.
(a) For all ε > 0, there exists n ∈ N such that |xn+1 − xn| < ε.
(b) There exists n ∈ N such that for all ε > 0, |xn+1 − xn| < ε.
(c) There exists ε > 0 such that for all n ∈ N, |xn+1 − xn| < ε.
(d) For all n ∈ N, there exists ε > 0 such that |xn+1 − xn| < ε.

(a) This is true. Every convergent sequence is a Cauchy sequence, and so given ε > 0
there exists N ∈ N such that |xm − xn| < ε for every m, n > N. Just take n = N + 1
and m = n + 1 = N + 2.

(b) This is false in general. The only way for a nonnegative quantity to be less than ε

for every ε > 0 is if that quantity equals 0. So the assertion boils down to “There
exists n ∈ N such that |xn+1 − xn| = 0”, and this is definitely not necessarily true
for every convergent sequence (only if it happens to have two consecutive terms
that are equal).

(c) This is true. Every convergent sequence is bounded (problem VII below), and so
there exists a real number B such that |xn| ≤ B for all n ∈ N. Then by the triangle
inequality, |xn+1 − xn| ≤ |xn+1| + |−xn| ≤ 2B, so choosing ε greater than 2B is
sufficient.

(d) This is true for the silly reason that we get to pick ε after n is chosen. Just choose
ε = |xn+1 − xn|.

III. (D’Angelo and West, p. 288, #14.10) Let 〈x〉 be a sequence of real numbers.
(a) If 〈x〉 converges, then there exists n ∈ N such that |xn+1 − xn| < 1/2n.
(b) If |xn+1 − xn| < 1/2n for all n ∈ N, then 〈x〉 converges.

(a) This is false. The sequence given by the formula xn = 2
n is a counterexample: it

converges to 0, but |xn+1 − xn| evaluates to 2
n(n+1) , and it can be easily proved by

induction that 2
n(n+1) ≥

1
2n for all n ∈ N.

(b) This is true. Given m > n, the triangle inequality gives

|xm − xn| ≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xn+1 − xn|,
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whereupon the inequality in the hypothesis gives

|xm − xn| <
1

2m−1 +
1

2m−2 + · · ·+ 1
2n =

1
2n−1 −

1
2m−1 <

1
2n−1 ,

where we have used the formula for the sum of a finite geometric series. Now
given any ε > 0, there exists an integer N such that 1

2N−1 < ε (solve the inequality
using logarithms). Therefore, for any m > n > N, we have

|xm − xn| <
1

2n−1 <
1

2N−1 < ε.

This proves that 〈x〉 is a Cauchy sequence, which implies that 〈x〉 converges.

IV. (D’Angelo and West, p. 288, #14.12) If an → 0 and bn → 0, then ∑ anbn converges.
This is false: take an = 1√

n and bn = 1√
n , for example.

V. (D’Angelo and West, p. 291, #14.59) Let 〈a〉 be a convergent sequence of positive numbers.
Prove that ∑∞

k=1
1

kak
diverges.

Since 〈a〉 is convergent, it is bounded by problem VII below. Therefore, we can choose
B such that |an| ≤ B for all n ∈ N. (We may omit the absolute value signs, since we are
given that the an are positive.) This implies that 1

an
≥ 1

B and that 1
nan

≥ 1
B

1
n for every

n ∈ N. Now the series ∑ 1
n diverges, and so the series ∑ 1

B
1
n must also diverge (we’re just

multiplying by a constant: if one of the series converged, then by the arithmetic of limits
the other would converge as well). Since 1

nan
≥ 1

B
1
n for every kn ∈ N, the comparison test

tells us that ∑ 1
nan

also diverges.

VI. Let a and r be real numbers with |r| < 1. Prove that the series ∑∞
n=1 arn converges to the value

ar/(1 − r).
Define sn = ar1 + ar2 + · · ·+ arn to be the nth partial sum of the series in question; we

need to prove that lim sn = ar(1 − r). We have a formula for this finite geometric series
though, namely

sn = ar1 + ar2 + · · ·+ arn = ar
1 − rn

1 − r
.

Now it’s easy to show that when |r| < 1, we have lim rn = 0. (Miniproof when r is
positive: since r < 1, the sequence rn is decreasing, so if it’s bounded, the limit equals the
infimum. Proving that 0 is the infimum boils down to proving that rn can get less than
any positive ε; this inequality can be solved for n by taking logarithms.) Therefore by the
arithmetic of limits,

lim sn = lim
(

ar
1 − rn

1 − r

)
= (lim ar)

lim 1 − lim rn

lim(1 − r)
= ar

1 − 0
1 − r

=
ar

1 − r
as desired.

VII. Prove that every convergent sequence is bounded.
Let 〈s〉 be a convergent sequence, and let L = lim sn. Choosing ε = 1, we see that there

exists N ∈ N such that |sn − L| < 1 for all n > N. This implies, by the triangle inequality,
that

|sn| = |(sn − L) + L| ≤ |sn − L|+ |L| < 1 + |L|
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for all n > N. Therefore if we set

B = max{s1, s2, . . . , sN , 1 + |L|},

we have |sn| ≤ B for all n ∈ N. Therefore 〈s〉 is bounded.

VIII.
(a) Define sn = 1 + 1

22 + 1
32 + · · ·+ 1

n2 . Prove that sn ≤ 2 − 1
n for every n ∈ N.

(b) Prove that the series ∑∞
n=1

1
n2 converges.

(c) Prove that the series ∑∞
n=1

1
nπ converges.

(a) We prove this by induction on n. The base case n = 1 is trivial, since s1 = 1 and
2 − 1

1 = 1 as well. For the induction step, suppose that sn ≤ 2 − 1
n for some n ∈ N;

we need to prove that sn+1 ≤ 2 − 1
n+1 . Notice that since n + 1 > n, we have

1
n+1 < 1

n and so 1
(n+1)2 < 1

n(n+1) . Therefore

sn+1 = sn + 1
(n+1)2 ≤

(
2 − 1

n
)
+ 1

(n+1)2 <
(
2 − 1

n
)
+ 1

n(n+1) .

A little algebra now shows that 2 − 1
n + 1

n(n+1) = 2 − 1
n+1 , as desired.

(b) With the partial sums sn defined as in part (a), we need to prove that the sequence
〈s〉 converges. Notice that 〈s〉 is an increasing sequence, since sn+1 − sn = 1

(n+1)2 >

0 for every n ∈ N. Also, from part (a) we have sn ≤ 2 − 1
n < 2. Therefore |sn| ≤ 2

for every n ∈ N (since each sn is positive), which means that 〈s〉 is bounded. We
conclude from the monotone convergence theorem that 〈s〉 converges.

(c) This is a simple application of the comparison test. Since π > 2, we have nπ ≥ n2

for every n ≥ 1. Therefore 1
nπ ≤ 1

n2 for every n ∈ N. Since we proved in part (b)
that the series ∑ 1

n2 converges, the comparison test tells us that the series ∑ 1
nπ also

converges.

IX.
(a) Define a sequence 〈a〉 = 1

2 , 1
4 , 1

4 , 1
8 , 1

8 , 1
8 , 1

8 , 1
16 , 1

16 , 1
16 , 1

16 , 1
16 , 1

16 , 1
16 , 1

16 , 1
32 , . . . ; this se-

quence is given by the formula

an =



1
2 , if 1 ≤ n < 2,
1
4 , if 2 ≤ n < 4,
1
8 , if 4 ≤ n < 8,
1

16 , if 8 ≤ n < 16,
...

1
2k , if 2k−1 ≤ n < 2k,

...

Prove that a1 + a2 + · · ·+ a2k−1 = k
2 for every positive integer k.

(b) Prove that the series ∑∞
n=1 an diverges.

(c) Prove that the series ∑∞
n=1

1
n diverges.

(d) Let p ≤ 1 be a real number. Prove that the series ∑∞
n=1

1
np diverges.
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(a) We proceed by induction on k. When k = 1, we have 2k − 1 = 1, and so what we
need to prove is simply a1 = 1

2 , which is straight from the definition. This finishes
the base case.

For the inductive step, we assume for some k ∈ N that a1 + a2 + · · ·+ a2k−1 = k
2 ;

we need to prove that a1 + a2 + · · ·+ a2k+1−1 = k+1
2 . Notice that

a2k + a2k+1 + · · ·+ a2k+1−1 = 1
2k+1 + 1

2k+1 + · · ·+ 1
2k+1 = 1

2k+1 · 2k = 1
2 ,

since each of the terms is equal to 1
2k+1 by the definition of the sequence, and there

are 2k terms in the sum. Therefore, by the induction hypothesis together with this
last calculation,

a1 + a2 + · · ·+ a2k+1−1 = (a1 + a2 + · · ·+ a2k−1) + (a2k + a2k+1 + · · ·+ a2k+1−1)

= k
2 + 1

2 = k+1
2

as desired.
(b) Let sn = a1 + a2 + · · · + an be the nth partial sum of the series ∑ an. We claim

that 〈s〉 is unbounded. To see this, suppose for the sake of contradiction that 〈s〉 is
actually bounded. If that were true, we could find an integer M such that |sn| ≤ M
for every n ∈ N. On the other hand, we could then look at n = 22M+1 − 1. By part
(a), we know that

sn = s22M+1−1 = 2M+1
2 = M + 1

2 > M,

which contradicts the choice of M. Therefore 〈s〉 is in fact unbounded.
Now that we know that 〈s〉 is unbounded, problem VII (more precisely, its con-

trapositive) tells us that 〈s〉 diverges. Therefore ∑ an diverges as well by definition.
(c) We claim that 1/n > an for every n ∈ N. To see this, choose k ∈ N such that

2k−1 ≤ n < 2k. (This value of k can be written as blog2 nc+ 1, if you like, but that
won’t be important for this proof.) Then an = 1/2k by definition, and 1/2k < 1/n
since n < 2k, which shows that an < 1/n. Now the divergence of ∑ 1/n follows
from the comparison text, since we proved in part (b) that ∑ an diverges.

(d) Since p ≤ 1, we have 1 − p ≥ 0. Therefore n1−p ≥ 1 for all n ∈ N. This is the
same as n1/np ≥ 1, and dividing both sides by the positive number n yields the
inequality 1/np ≥ 1/n for every n ∈ N. We already know from part (c) that the
series ∑ 1/n diverges. Therefore, by the comparison test, the series ∑ 1/np also
diverges.

Notice how much we used theorems and known results to help us with these more
complicated problems. The fact that convergent sequences are always bounded, for ex-
ample, showed up about five times on this study sheet alone.
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