Math 220, Section 203—Homework #6

due in class Thursday, March 13, 2003

Remember that all of your solutions must be written in complete sentences that are easy to read and in logically correct order.

- I. D'Angelo and West, p. 95, #4.11
- II. Let *a* and *b* be any real numbers, and define a function $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2 + ax + b$. Prove that *f* is neither injective nor surjective. (Hint: complete the square.)
- III. For each of the parts below, either write down a specific function with the specified properties (no proof necessary), or explain why such a function does not exist.

(a) $a : \mathbb{Z} \to \mathbb{Z}$, *a* is injective but not surjective

- (b) $b : \mathbb{Z} \to \mathbb{Z}$, *b* is surjective but not injective
- (c) $c : \mathbb{Z} \to \mathbb{Z}$, *c* is a bijection
- (d) $d: [5] \rightarrow [3], d$ is an injection
- (e) $e: [5] \rightarrow [3]$, *e* is not a surjection
- (f) $f : [4] \rightarrow [4], f$ is injective but not surjective
- IV. Let $f : [0, 1] \to \mathbb{R}$ be a decreasing function.
 - (a) Prove that *f* is bounded.
 - (b) Prove that f is injective.
 - (c) Prove that f is not surjective.
- V. Define the following set *S*, a subset of \mathbb{R}^2 :

 $S = \{(m, 0) \colon m \in \mathbb{Z}\} \cup \{(0, n) \colon n \in \mathbb{Z}\}.$

(So the points of *S* are where we put the "tick marks" on the *x*- and *y*-axes when we draw a graph.) Prove that *S* is countably infinite.

- VI. Suppose that *F* is a finite set with $F \cap \mathbb{N} = \emptyset$. Prove that $F \cup \mathbb{N}$ is countably infinite, by finding a bijection from \mathbb{N} to $F \cup \mathbb{N}$.
- VII. Prove the following statement: if *m* and *n* be natural numbers with m < n, and if *S* is a set with *m* elements and *T* is a set with *n* elements, then every function $f: S \rightarrow T$ is not surjective. (In other words, a function from a "small" set to a "big" set can't attain all the possible values in the target. Hint: prove this statement by induction on *m*. The proof should be analogous to our proof of the Pigeonhole Principle, from class.)