Math 220, Section 203—Homework #6
due in class Thursday, March 13, 2003

Remember that all of your solutions must be written in complete sentences that are easy
to read and in logically correct order.
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D’Angelo and West, p. 95, #4.11

Let a2 and b be any real numbers, and define a function f : R — R by f(x) =
x? + ax + b. Prove that f is neither injective nor surjective. (Hint: complete the
square.)

For each of the parts below, either write down a specific function with the specified
properties (no proof necessary), or explain why such a function does not exist.
(a) a: Z — Z, a is injective but not surjective
(b) b:Z — Z, b is surjective but not injective
(¢c) ¢: Z — 7Z, cis a bijection
(d) d : [5] — [3], d is an injection
(e) e: [5] — [3], eis not a surjection
(f) f:[4] — [4], f is injective but not surjective
Let f : [0,1] — R be a decreasing function.
(a) Prove that f is bounded.
(b) Prove that f is injective.
(c) Prove that f is not surjective.

. Define the following set S, a subset of R?:

S={(m0):meZ}U{(0,n): necZ}.

(So the points of S are where we put the “tick marks” on the x- and y-axes when
we draw a graph.) Prove that S is countably infinite.

Suppose that F is a finite set with F NN = (). Prove that F U N is countably infinite,
by finding a bijection from N to F U N.

Prove the following statement: if m and n be natural numbers with m < n, and
if S is a set with m elements and T is a set with n elements, then every function
f : S — Tisnotsurjective. (In other words, a function from a “small” set to a “big”
set can’t attain all the possible values in the target. Hint: prove this statement by
induction on m. The proof should be analogous to our proof of the Pigeonhole
Principle, from class.)



