A few extra study questions.

- 1. Prove that the set X of functions from $\{0,1\}$ to \mathbb{N} is countable.
- 2. Prove that the set Y of functions from \mathbb{N} to $\{0,1\}$ is uncountable.
- 3. Does

$$\sum_{n=1}^{\infty} \frac{n^2 + n}{n^2 + 1}$$

converge?

4. Does

$$\sum_{n=1}^{\infty} \frac{(2n)!}{n! \cdot n!} 5^{-n}$$

converge?

5. Let $f : \mathbb{R} \to \mathbb{R}$ be strictly decreasing. Define $g(x) = f(x^2)$. Show that g is not decreasing.

Solutions

- 1. A function $f : \{0,1\} \to \mathbb{N}$ defines a point (f(0), f(1)) in \mathbb{N}^2 . This is a bijection from X to \mathbb{N}^2 , which is countable as showed in class. So X is countable, being in bijection with a countable set.
- 2. Let $Y_0 \subset Y$ be the subset consisting of functions f which are not eventually equal to one, that is, f(n) = 0 for an infinite number of different $n \in \mathbb{N}$. Given $f \in Y_0$, define a real number $r \in [0,1)$ by its binary expansion $0.x_1x_2x_3...$ where $x_1 = f(1), x_2 = f(2),...$ This is a bijection from Y to the interval $[0,1) \subset \mathbb{R}$, and [0,1) is uncountable. Therefore Y_0 is uncountable, and Y is uncountable since it contains an uncountable subset.
- 3. No, since the terms do not tend to zero:

$$\lim_{n \to \infty} \frac{n^2 + n}{n^2 + 1} = 1.$$

Recall that if an infinite sum converges then the terms must go to zero.

4. Yes, by the ratio test:

$$\frac{a_{n+1}}{a_n} = \frac{(2n+2)!}{(n+1)!^2} 5^{-n-1} / \frac{(2n)!}{n!^2} 5^{-n} = \frac{(2n+2)(2n+1)}{5(n+1)(n+1)}$$

which has limit 4/5 when $n \to \infty$. Since 4/5 < 1 the original series converges.

5. g(-1) - g(0) = f(1) - f(0) < 0. So g is not decreasing.