Math 220, Section 201/202 Study Questions for First Midterm

- I. D'Angelo and West, p. 21, #1.7
- II. D'Angelo and West, p. 21, #1.13
- III. D'Angelo and West, p. 21, #1.14
- IV. D'Angelo and West, p. 21, #1.15
- V. D'Angelo and West, p. 22, #1.21
- VI. D'Angelo and West, p. 22, #1.27
- VII. D'Angelo and West, p. 23, #1.34
- VIII. D'Angelo and West, p. 23, #1.40 (only the first part, not the part about the U.S. states)
 - IX. D'Angelo and West, p. 46, #2.24
 - X. D'Angelo and West, p. 49, #2.49
 - XI. Using the logical symbols we have been working with, find a formula that expresses the "exclusive or". That is, find a formula F(P, Q) involving the sentences P and Q that has the following truth table:

Р	Q	F(P,Q)
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- XII. Prove that $\mathbb{Z} \cap (\frac{1}{4}, \frac{3}{4}) = \emptyset$.
- XIII. Find set identities that are analogous to each of the following tautologies:
 - (a) $(P \land Q) \Rightarrow P$ (b) $(P \land \neg P) \Rightarrow Q$ (c) $(P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor (P \land R))$ (d) $P \lor (\neg P)$

XIV. To prove $A = \emptyset$, we should show that

$$(\forall x)(x \notin \emptyset).$$

On the other hand, we learned that to prove that any two sets *A* and *B* are equal, we need to prove

$$(\forall x)((x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)).$$

It seems we should be able to take $B = \emptyset$, so that proving that $A = \emptyset$ requires proving

 $(\forall x)((x \in A \Rightarrow x \in \emptyset) \land (x \in \emptyset \Rightarrow x \in A)).$

Is this logically equivalent to the first formulation?

XV. D'Angelo and West, p. 24, #1.46

- XVI. D'Angelo and West, p. 24, #1.49
- XVII. D'Angelo and West, p. 24, #1.51. (These sets are called *inverse images* and are discussed a bit further on page 14.)
- XVIII. Determine which statements below are true. If true, provide a proof; if false, provide a counterexample.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are increasing functions, then the function f + g is increasing.
 - (b) If $f : \mathbb{R} \to \overline{\mathbb{R}}$ and $g : \mathbb{R} \to \mathbb{R}$ are increasing functions, then the function fg is increasing.
 - (c) If $f : [0, \infty) \to \mathbb{R}$ and $g : [0, \infty) \to \mathbb{R}$ are increasing functions, then the function fg is increasing.
 - XIX. (a) Let $S_1 = \{x \in \mathbb{R} : x^n \le x \text{ for every } n \in \mathbb{N}\}$. Prove that $S_1 = [0, 1]$. (Don't neglect negative numbers x!)
 - (b) Let $S_2 = \{x \in \mathbb{R} : x^n \ge x \text{ for every } n \in \mathbb{N}\}$. Find (with proof) a simple expression for S_2 in terms of intervals.
 - (c) Prove that for all real numbers *x*, if $(x^{123} x)(x^{124} x) < 0$ then x < -1.