
Math 220, Sections 201/202
Solutions for Second Midterm

(March 9, 2005)

I. Write down the statement of the Strong Induction Principle.
To prove (∀n ∈ N)P(n), it suffices to prove P(1) and

(∀n ∈ N)
(
(P(1) ∧ . . . ∧ P(n− 1)) ⇒ P(n)

)
.

Also acceptable is(
P(1) ∧ (∀n ∈ N)

(
(P(1) ∧ . . . ∧ P(n− 1)) ⇒ P(n)

))
⇒ (∀n ∈ N)P(n)

or an equivalent statement in words.

II. Let f : A → B and g : B → C be surjections. Prove that the composition g ◦ f is also a
surjection.

Given c ∈ C, we need to prove that there is an a ∈ A such that g( f (a)) = c. There
exists a b ∈ B such that g(b) = c, since g is surjective. For this b, there exists a ∈ A such
that f (a) = b since f , is surjective. Therefore g( f (a)) = g(b) = c, proving that g ◦ f is
surjective.

III. Find, with proof, a surjective function from Q∩ (0, 1) to N.
One possibility is to define f (1/n) = n for natural numbers n ≥ 2, and f (x) = 1 if

1/x 6∈ N. This is surjective, since for any natural number n greater than or equal to 2, the
real number 1/n ∈ (0, 1) maps to n, while f (2/3) = 1.

IV. Let S be the set of all real numbers x such that x2 ∈ Z. (For example,
√

2 ∈ S and −3 ∈ S,
but 1

2 /∈ S and π /∈ S.) Prove that S is countable.
Define f : S → Z by

f (x) =
{

x2 if x ≥ 0
−x2 if x < 0.

Let us show that f is an injection. Since f maps nonnegative numbers to nonnegative
numbers and negative numbers to negative numbers, we need only check that f (x) =
f (y) ⇒ x = y when x, y are both nonnegative or both negative. If x2 = y2 and x, y ≥ 0,
then x = y. Similarly if −x2 = −y2 and x, y < 0, then x = y.

On the other hand, f is surjective: given n ∈ Z, we have f (
√

n) = n if n is nonnegative
or f (−

√
|n|) = n if n is negative (it is important to note that

√
n and −

√
|n| truly are

elements of S). Thus f is a bijection from S to Z. Since we know Z is countable, S is
therefore also countable.

V. Let T be the set T = {x ∈ Q : x2 < 3}. Find, with proof, inf T.

The infimum is −
√

3. To see this we need to know two things: that it is a lower bound,
and it is larger than any other lower bound. Well,−

√
3 is a lower bound, since if y < −

√
3

then y2 > 3 and so y 6∈ T. This is the contrapositive of ”if y ∈ T then y ≥ −
√

3”.
If −

√
3 < x, let’s show that x is not a lower bound. If x > 0, then x is definitely not a

lower bound since 0 ∈ T. If on the other hand −
√

3 < x ≤ 0, there is a rational number y
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with −
√

3 < y < x ≤ 0. By squaring, y2 < 3, so that y ∈ T, which shows that x is not a
lower bound for T.

VI. Prove that if you add together all the odd positive integers up to any point, you always get a
perfect square. (For example, 1 + 3 + 5 + 7 + 9 + 11 = 36.) You may use induction if you wish.

Let’s prove that ∑n
j=1(2 j − 1) = n2. Denote this statement by P(n). Then P(1) is just

the statement that 2 · 1− 1 = 12, which is true. Assume P(n− 1) is true, that is, assume
n−1

∑
j=1

(2 j− 1) = (n− 1)2.

Adding 2n− 1 to both sides we have
n

∑
j=1

(2 j− 1) =
n−1

∑
j=1

(2 j− 1) + (2n− 1) = (n− 1)2 + 2n− 1 = (n2 − 2n + 1) + 2n− 1 = n2.
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