Math 220, Sections 201/202 Solutions for Second Midterm (March 9, 2005)

I. Write down the statement of the Strong Induction Principle.

To prove $(\forall n \in \mathbb{N})P(n)$, it suffices to prove P(1) and

$$(\forall n \in \mathbb{N})((P(1) \land \ldots \land P(n-1)) \Rightarrow P(n)).$$

Also acceptable is

$$(P(1) \land (\forall n \in \mathbb{N})((P(1) \land \ldots \land P(n-1)) \Rightarrow P(n))) \Rightarrow (\forall n \in \mathbb{N})P(n)$$

or an equivalent statement in words.

II. Let $f : A \to B$ and $g : B \to C$ be surjections. Prove that the composition $g \circ f$ is also a surjection.

Given $c \in C$, we need to prove that there is an $a \in A$ such that g(f(a)) = c. There exists a $b \in B$ such that g(b) = c, since g is surjective. For this b, there exists $a \in A$ such that f(a) = b since f, is surjective. Therefore g(f(a)) = g(b) = c, proving that $g \circ f$ is surjective.

III. Find, with proof, a surjective function from $\mathbb{Q} \cap (0, 1)$ to \mathbb{N} .

One possibility is to define f(1/n) = n for natural numbers $n \ge 2$, and f(x) = 1 if $1/x \notin \mathbb{N}$. This is surjective, since for any natural number n greater than or equal to 2, the real number $1/n \in (0, 1)$ maps to n, while f(2/3) = 1.

IV. Let *S* be the set of all real numbers *x* such that $x^2 \in \mathbb{Z}$. (For example, $\sqrt{2} \in S$ and $-3 \in S$, but $\frac{1}{2} \notin S$ and $\pi \notin S$.) Prove that *S* is countable.

Define $f : S \to \mathbb{Z}$ by

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0\\ -x^2 & \text{if } x < 0. \end{cases}$$

Let us show that *f* is an injection. Since *f* maps nonnegative numbers to nonnegative numbers and negative numbers to negative numbers, we need only check that $f(x) = f(y) \Rightarrow x = y$ when *x*, *y* are both nonnegative or both negative. If $x^2 = y^2$ and $x, y \ge 0$, then x = y. Similarly if $-x^2 = -y^2$ and x, y < 0, then x = y.

On the other hand, *f* is surjective: given $n \in \mathbb{Z}$, we have $f(\sqrt{n}) = n$ if *n* is nonnegative or $f(-\sqrt{|n|}) = n$ if *n* is negative (it is important to note that \sqrt{n} and $-\sqrt{|n|}$ truly are elements of *S*). Thus *f* is a bijection from *S* to \mathbb{Z} . Since we know \mathbb{Z} is countable, *S* is therefore also countable.

V. Let *T* be the set $T = \{x \in \mathbb{Q} : x^2 < 3\}$. Find, with proof, $\inf T$.

The infimum is $-\sqrt{3}$. To see this we need to know two things: that it is a lower bound, and it is larger than any other lower bound. Well, $-\sqrt{3}$ is a lower bound, since if $y < -\sqrt{3}$ then $y^2 > 3$ and so $y \notin T$. This is the contrapositive of "if $y \in T$ then $y \ge -\sqrt{3}$ ".

If $-\sqrt{3} < x$, let's show that *x* is not a lower bound. If x > 0, then *x* is definitely not a lower bound since $0 \in T$. If on the other hand $-\sqrt{3} < x \le 0$, there is a rational number *y*

with $-\sqrt{3} < y < x \le 0$. By squaring, $y^2 < 3$, so that $y \in T$, which shows that x is not a lower bound for T.

VI. Prove that if you add together all the odd positive integers up to any point, you always get a perfect square. (For example, 1 + 3 + 5 + 7 + 9 + 11 = 36.) You may use induction if you wish.

Let's prove that $\sum_{j=1}^{n} (2j-1) = n^2$. Denote this statement by P(n). Then P(1) is just the statement that $2 \cdot 1 - 1 = 1^2$, which is true. Assume P(n-1) is true, that is, assume

$$\sum_{j=1}^{n-1} (2j-1) = (n-1)^2.$$

Adding 2n - 1 to both sides we have

$$\sum_{j=1}^{n} (2j-1) = \sum_{j=1}^{n-1} (2j-1) + (2n-1) = (n-1)^2 + 2n - 1 = (n^2 - 2n + 1) + 2n - 1 = n^2.$$