Math 223, Section 101-Homework \#3

due Wednesday, September 29, 2010 at the beginning of class
Practice problems. Don't turn in these problems. Most of these problems are easy, and most of them have answers in the back of the book, so they can be useful to you to check your understanding of the material.

1. Friedberg, Insel, and Spence, Section 1.2, p. 16, \#21
2. Friedberg, Insel, and Spence, Section 1.5, p. 42, \#18
3. In the vector space $P(\mathbb{R})$, consider the subset $S=\left\{1-x, x-x^{2}, x^{2}-x^{3}, \ldots\right\}$. Notice the telescoping infinite series

$$
1=(1-x)+\left(x-x^{2}\right)+\left(x^{2}-x^{3}\right)+\cdots
$$

Despite this, show that 1 is not in $\operatorname{span}(S)$.
4. Friedberg, Insel, and Spence, Section 1.6, pp. 53-54, \#1(a)-(1)
5. Friedberg, Insel, and Spence, Section 1.6, p. 54, \#2(a),(c),(e), \#3(a),(c),(e), \#4, \#5, and \#7
6. Friedberg, Insel, and Spence, Section 1.6, p. 55, \#9, \#10(a),(c), and \#13
7. Friedberg, Insel, and Spence, Section 1.6, p. 56, \#19 and \#24
8. Friedberg, Insel, and Spence, Section 1.6, p. 57, \#26

Homework problems. Write up and hand in solutions to these problems. Please have your solutions to these problems in the correct order on your pages. Write clearly and legibly, in complete sentences; your solutions will be better if you think about how to best phrase your answer before you begin to write it. Please staple the pages together (unstapled solutions will not be accepted).

1. Friedberg, Insel, and Spence, Section 1.5, p. 42, \#13. Ignore the bit about "a field of characteristic not equal to two": let V be simply a regular vector space with real numbers as its scalars.
2. Friedberg, Insel, and Spence, Section 1.6, p. 54, \#2(b),(d) and \#3(b),(d)
3. Friedberg, Insel, and Spence, Section 1.6, p. 55, \#10(b),(d)
4. Friedberg, Insel, and Spence, Section 1.6, p. 55, \#14, except use \mathbb{R}^{5} rather than the book's F^{5}.
5. Friedberg, Insel, and Spence, Section 1.6, p. 56, \#15, except use $M_{n \times n}(\mathbb{R})$ rather than the book's $M_{n \times n}(F)$.
6. Friedberg, Insel, and Spence, Section 1.6, p. 56, \#22 and \#25
7. Let V be the set of all infinite sequences of real numbers; a typical element of V looks like $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. With addition and scalar multiplication defined componentwise, V is a vector space (you don't have to prove this). For each positive integer j, define e_{j} to be the element of V with a 1 in the j th position and 0 s everywhere else:

$$
e_{j}=\{\underbrace{0, \ldots, 0}_{j-10 \mathrm{~s}}, 1,0,0, \ldots\} .
$$

Let $E=\left\{e_{j}: j \geq 1\right\}$ be the set of all these vectors e_{j}.
(a) Prove that E is linearly independent.
(b) Prove that E is not a basis for V.
8. Let V be a vector space, let x_{1}, \ldots, x_{n} be vectors in V, and let $W=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$. Define

$$
B=\left\{x_{j}: x_{j} \notin \operatorname{span}\left(\left\{x_{1}, \ldots, x_{j-1}\right\}\right)\right\} ;
$$

that is, B is the set of all those x_{j} (where j ranges from 1 to n) that are not in the span of the x_{i} 's that come before it. Prove that B is a basis for W. (To decide what to do with x_{1} : we interpret $\left\{x_{1}, \ldots, x_{j-1}\right\}$ as the empty set when $j=1$; recall that $\operatorname{span}(\emptyset)=\{\underline{0}\}$.) Do not use arguments involving reduced row echelon forms-our knowledge of that was derived from the result in this problem.

Bonus question. Find, with proof, a vector space other than $P(\mathbb{R})$ that has a countably infinite basis. (If you haven't seen it before, for a discussion of countability see

> http://en.wikipedia.org/wiki/Countable
or most textbooks that discuss proofs and sets.)

