
Math 223, Section 101—Homework #9
due Friday, November 26, 2010 at the beginning of class

Practice problems. Don’t turn in these problems. Most of these problems are easy, and most of
them have answers in the back of the book, so they can be useful to you to check your understand-
ing of the material.

1. Friedberg, Insel, and Spence, Section 6.1, p. 337, #6

2. Let A,B ∈ Mn×n(C). Let a1, . . . , an be the n vectors formed from the rows of A, and let
b1, . . . , bn be the n vectors formed from the rows of B. Show that the entries of the product
AB∗ are given by (AB∗)i,j = 〈ai, bj〉 (using the standard inner product on Cn).

3. Let c1, . . . , cn be any positive real numbers. Show that 〈x, y〉 =
∑n

j=1 cjxjyj defines an
inner product on Cn.

4. Friedberg, Insel, and Spence, Section 6.2, pp. 352–3, #1(a),(b),(f),(g)

5. Friedberg, Insel, and Spence, Section 6.2, p. 353, #2(b),(c),(e),(g),(k)

6. Friedberg, Insel, and Spence, Section 6.2, p. 354, #4

7. Friedberg, Insel, and Spence, Section 6.2, p. 354, #19(a),(b). Hint: first find a basis for W ,
then an orthogonal basis.

8. Let {v1, . . . , vk} be an orthogonal set in the inner product space V , and letW = span
(
{v1, . . . , vk}

)
.

(a) Let x ∈ V , and let u be the orthogonal projection of x on W . Show that x − u is
orthogonal to each of v1, . . . , vk. Conclude that x − u is orthogonal to every vector
in W , and so x− u ∈ W⊥.

(b) Show that W⊥ is a subspace of V .

9. Friedberg, Insel, and Spence, Section 6.3, p. 365, #1(a),(c)–(g)

10. Friedberg, Insel, and Spence, Section 6.3, pp. 365–6, #2 and #3(a),(c)

11. Friedberg, Insel, and Spence, Section 6.4, pp. 374–5, #1 and #2(a),(e)

Homework problems. Write up and hand in solutions to these problems. Please have your solu-
tions to these problems in the correct order on your pages. Write clearly and legibly, in complete
sentences; your solutions will be better if you think about how to best phrase your answer before
you begin to write it. Please staple the pages together (unstapled solutions will not be accepted).

1. Let f(t) = ant
n + · · · + a2t

2 + a1t + a0 be the characteristic polynomial of an n × n
matrix A.
(a) Show that an = (−1)n, that an−1 equals (−1)n−1 tr(A), and that a0 = det(A).
(b) Assume that f(t) splits. Show that the sum of the eigenvalues of A equals tr(A) and

that the product of the eigenvalues of A equals det(A). (Here, if an eigenvalue of A
has multiplicity m, then we add it to the sum m times, and multiply it into the product
m times.) Hint: what do you know about the relationship between the sum and product
of roots of a polynomial and the coefficients of the polynomial?

2. Friedberg, Insel, and Spence, Section 6.2, p. 353, #2(f),(h)

(continued on next page)



3. Define an inner product on P (R) by the formula 〈f(x), g(x)〉 =
∫ 1

0
f(t)g(t) dt.

(a) Use the Gram–Schmidt process on the linearly independent set R = {1, x, x2} to
produce an orthogonal basis for P2(R).

(b) Use the Gram–Schmidt process on the linearly independent set S = {x2, x, 1} to
produce an orthogonal basis for P2(R).

4. Friedberg, Insel, and Spence, Section 6.2, pp. 354–5, #6 and #13(a)–(c). In both problems,
you may assume that V is finite-dimensional.

5. (a) Friedberg, Insel, and Spence, Section 6.3, p. 366, #3(b)
(b) Define a linear operator T onM2×2(C) by T (A) = A

(
i

2−i
3
0

)
. Calculate T ∗(C), where

C =
(−3

2i
4+3i
1−5i

)
. (Hint: calculate [T ]β for a convenient ordered basis β for M2×2(C),

and apply Theorem 6.10.)

6. Friedberg, Insel, and Spence, Section 6.3, p. 366, #12. You may assume that V is finite-
dimensional.

7. Friedberg, Insel, and Spence, Section 6.4, p. 375, #2(b),(d),(f)

8. Friedberg, Insel, and Spence, Section 6.4, p. 376, #9

Bonus question. Let V and W are finite-dimensional inner product spaces (both real or both
complex). We would like to understand when a linear transformation T : V → W exists such that

〈T (x), T (y)〉 = 〈x, y〉 for all x, y ∈ V. (∗)
1. Show that there exists a linear transformation T : V → W satisfying (∗) if and only if

dim(V ) ≤ dim(W ).
2. If dim(V ) = dim(W ), show that any linear transformation T : V → W satisfying (∗) is in

fact an isomorphism.


