Math 223, Section 201 Homework #6

due Friday, March 8, 2002 at the beginning of class

Warm-Up Questions—do not hand in

- I. Lay, Section 3.2, p. 194, #29
- II. Lay, Section 3.2, p. 194, #32
- III. Lay, Section 3.3, p. 204, #9
- IV. Lay, Section 3.3, p. 204, #18
- V. Lay, Section 3.3, p. 205, #29 and #30
- VI. Lay, Chapter 3 Supplementary Exercises, p. 206, #1

March 8's quiz will be one of the first five warm-up questions.

Homework Questions—hand these in

- I. Lay, Section 3.2, p. 194, #22 and #26
- II. Lay, Section 3.2, p. 194, #34
- III. Lay, Section 3.3, p. 204, #6
- IV. Let A be an $m \times n$ matrix and B an $n \times m$ matrix, so that AB is $m \times m$. Suppose that det AB = 7. Prove that the columns of A span \mathbb{R}^m and that the columns of B are linearly independent. (Note: A and B are not necessarily square matrices!)
- V. Lay, Section 3.3, p. 204–5, #22 and #24
- VI. Given real numbers x_1, x_2, \ldots, x_n , define the Vandermonde matrix $V(x_1, x_2, \ldots, x_n)$ to be the $n \times n$ matrix

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}.$$

Prove that

$$\det V(x_1, x_2, \dots, x_n) = (x_2 - x_1)(x_3 - x_1) \dots (x_n - x_1)$$
$$\times (x_3 - x_2)(x_4 - x_2) \dots (x_n - x_2) \times \dots \times (x_n - x_{n-1})$$
$$= \prod_{1 \le i < j \le n} (x_j - x_i).$$

Conclude that $V(x_1, x_2, ..., x_n)$ is invertible if and only if the numbers $x_1, x_2, ..., x_n$ are all distinct.