Math 223, Section 201 Homework #8 due Monday, March 25, 2002 at the beginning of class

Warm-Up Questions-do not hand in

- I. Lay, Section 4.4, p. 248–249, #4 and #8
- II. Lay, Section 4.4, p. 248–249, #6 and #28
- III. Lay, Section 4.5, p. 255, #12
- IV. Let $T: V \to W$ be a linear transformation between two vector spaces V, W. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ be a set of vectors in V, and let $\mathbf{w}_1 = T(\mathbf{v}_1), \ldots, \mathbf{w}_p = T(\mathbf{v}_p)$.
 - (a) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is linearly dependent, prove that $\{\mathbf{w}_1, \ldots, \mathbf{w}_p\}$ is also linearly dependent.
 - (b) Give an example to show that it is possible for $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ to be linearly independent while $\{\mathbf{w}_1, \ldots, \mathbf{w}_p\}$ is linearly dependent.
 - V. Define $H = \{p(t) \in \mathbb{P}_4 : p(0) = p(1) = p(2)\}$. Prove that H is a subspace of \mathbb{P}_4 .

March 25's quiz will be one of these five warm-up questions.

Homework Questions—hand these in

- I. Lay, Section 4.4, p. 248–249, #14 and #30
- II. Let $T: V \to W$ be a linear transformation between two vector spaces V, W. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ be a set of vectors in V, and let $\mathbf{w}_1 = T(\mathbf{v}_1), \ldots, \mathbf{w}_p = T(\mathbf{v}_p)$.
 - (a) Give an example to show that it is possible for $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ to span V while $\{\mathbf{w}_1, \ldots, \mathbf{w}_p\}$ does not span W.
 - (b) Suppose T is onto. Prove that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ spans V, then $\{\mathbf{w}_1, \ldots, \mathbf{w}_p\}$ spans W.
- III. Lay, Section 4.5, p. 255, #8
- IV. Let $B = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be a basis for \mathbb{R}^n , and let $\mathbf{y}_1, \ldots, \mathbf{y}_n$ be any vectors in \mathbb{R}^n . Show that there is a unique linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ such that $T(\mathbf{b}_1) = \mathbf{y}_1, \ldots,$ $T(\mathbf{b}_n) = \mathbf{y}_n$. (Hint: try to relate the standard matrix of the linear transformation to the change-of-coordinates matrix P_B .)
- V. Let H be the subspace of \mathbb{P}_4 defined in Warm-Up Question V.
 - (a) Find a basis for H. (Hint: use the coordinate mapping relative to the standard basis for \mathbb{P}_4 so you can think about the problem in the appropriate \mathbb{R}^n .)
 - (b) Let $q(t) = t^4 2t^3 t^2 + 2t + 1$. Note that q(0) = q(1) = q(2) = 1, so that $q \in H$. Find a basis for H that has q(t) as one of its vectors.
- VI. Let A be an $m \times n$ matrix whose rank equals r. Show that there exists an $r \times r$ minor of A that is invertible. Also show that if k is an integer satisfying $k \le m, k \le n$, and k > r, then every $k \times k$ minor of A is singular.