
Math 308, Section 101

Solutions to Study Questions for Final Exam

(Thursday, December 16, 2004)

NEUTRAL GEOMETRY

I. Given a triangle 4AEF , let M be the midpoint of the segment EF . Choose a point D on
the ray AM such that |AD| = 2|AM |. Prove that 4DFE ≡ 4AEF .

Note that since M is between A and D, we have |AM | + |MD| = |AD| = 2|AM |, and
so |AM | = |MD|. We also know that |FM | = |ME| since M is the midpoint of EF .
Finally, the vertical angles ∠AMF and ∠DME are certainly congruent. Therefore, by
SAS, 4AMF ≡ 4DME; in particular, |AF | = |DE|. A similar argument shows that
4AME ≡ 4DMF and hence |AE| = |DF |. Finally, |EF | = |FE| trivially. We now know
enough to conclude from SSS that 4DFE ≡ 4AEF .

Define the defect of a triangle 4ABC, written δ(4ABC), to be δ(4ABC) = 180◦−∠A−∠B−∠C.

Notice that by the Saccheri-Legendre Theorem, the defect of a triangle is always a nonnegative

number of degrees.

II. Suppose that D, E, and F are points on the sides BC, AC, and AB of 4ABC, respec-
tively. Prove that

δ(4ABC) = δ(4AEF ) + δ(4BDF ) + δ(4CDE) + δ(4DEF ).

The right-hand side is

δ(4AEF ) + δ(4BDF ) + δ(4CDE) + δ(4DEF )

= (180◦ − ∠AEF − ∠AFE − ∠FAE) + (180◦ − ∠BDF − ∠BFD − ∠DBF )

+ (180◦ − ∠CDE − ∠CED − ∠DCE) + (180◦ − ∠DEF − ∠EFD − ∠FDE)

= 720◦ − ∠FAE − ∠DBF − ∠DCE − (∠AEF + ∠DEF + ∠CED)

− (∠CDE + ∠FDE + ∠BDF ) − (∠BFD + ∠EFD + ∠AFE)

= 720◦ − ∠FAE − ∠DBF − ∠DCE − 180◦ − 180◦ − 180◦

= 180◦ − ∠BAC − ∠CBA − ∠BCA = δ(4ABC).

All we used was that angles that together form a straight line add up to 180◦.

III. Legendre gave the following incorrect argument when he was trying to prove that the
Parallel Postulate follows from the neutral geometry axioms. Find the mistake in the follow-
ing “proof” that the sum of the angles of every triangle must equal 180◦ (a fact which would
indeed imply the Parallel Postulate, if proven correctly).

First we claim that for any triangle 4AEF , there exists a triangle 4ABC whose

defect is at least twice as big, that is, δ(4ABC) ≥ 2δ(4AEF ). To see this,

let M be the midpoint of the segment EF , and choose a point D on the ray

AM such that |AD| = 2|AM |; we know that 4DFE ≡ 4AEF . In particular,

δ(4DFE) = δ(4AEF ). Now draw any line through D that intersects the rays

AF and AE; call the points of intersection B and C, respectively. We then have

δ(4ABC) = δ(4AEF ) + δ(4BDF ) + δ(4CDE) + δ(4DEF )

≥ δ(4AEF ) + 0 + 0 + δ(4DEF ) = 2δ(4AEF ).
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Now suppose, for the sake of contradiction, that a triangle 4AEF existed with

an angle sum less than 180◦, so that δ(4AEF ) > 0. We can find a sequence of

triangles whose defects are at least 2δ(4AEF ), 4δ(4AEF ), 8δ(4AEF ), and so

on. Eventually, the numbers 2kδ(4AEF ) are bigger than 180◦, which is absurd,

since the largest possible defect of a triangle is 180◦. Therefore no triangle with

positive defect exists, that is, every triangle has angle sum exactly 180◦.

(Remember, this proof is incorrect—what is the mistake?)

The sole problem with the proof is the following statement: “Now draw any line through
D that intersects the rays AF and AE”. In hyperbolic geometry (and hence in neutral
geometry), it is quite possible for a point D to lie inside an angle ∠EAF , yet no line
exists that intersects both rays AF and AE. It just goes to show how misleading our
Euclidean geometry intuition can be when studying hyperbolic geometry. (At least we have
an advantage over Legendre: we know that hyperbolic geometry actually exists!)

EUCLIDEAN GEOMETRY

IV. (Baragar, p. 139, #7.11) Let P be a point inside a circle centered at O. Let T be a point
where the perpendicular to PO intersects the circle. Let P ′ be the point where the tangent to
the circle at T intersects OP . Show that P ′ is the image of P under inversion in the circle.

It would be clearer to say “Let T be a point where the perpendicular to PO at P intersects
the circle.” The outline of the solution is as follows: prove that the right triangles 4OPT and
4TPP ′ are similar, using the fact that ∠OTP +∠PTP ′ = 90◦. Conclude that |PO|/|OT | =
|TO|/|OP ′|, which is the equality needed to show that P ′ is the image of P under inversion
in the circle (since P ′ is already on the ray OP where that image needs to be).

V. In 4ABC, trisect each side. That is, choose points A′ and A′′ between B and C such
that |BA′| = |A′A′′| = |A′′C|; choose points B ′ and B′′ between C and A such that |CB ′| =
|B′B′′| = |B′′A|; and choose points C ′ and C ′′ between A and B such that |AC ′| = |C ′C ′′| =
|C ′′B|. Let P be the intersection of the segments C ′A′′ and A′B′′. Prove that 4C ′PB′′ ≡
4A′′PA′.

Note that |AC ′|/|AB| = 1/3 = |AB ′′|/|AC|, since we have trisected the various sides. It
follows that 4AC ′B′′ ∼ 4ABC and that the segments C ′B′′ and BC are parallel. There-
fore the opposite interior angles ∠C ′B′′P and ∠A′′A′P are congruent, as are ∠B ′′C ′P and
∠A′A′′P . We also have that |C ′B′′|/|BC| = 1/3, again by the similarity of 4AC ′B′′ and
4ABC. But we also have |A′A′′|/|BC| = 1/3, and so |C ′B′′| = |A′′A′|. Therefore by ASA,
4C ′PB′′ ≡ 4A′′PA′. [Remark: P is actually the centroid of 4ABC!]

VI. Let P and Q be two points on a circle and A a point outside the circle, and let the rays
AP and AQ intersect the circle again in the points P ′ and Q′, respectively. Suppose that P
is the midpoint of the segment AP ′ and that Q is the midpoint of the segment AQ′. Prove
that ∠PQP ′ = ∠QPQ′.

First we prove: if W, X, Y, Z are points on a circle centered at O, and |WX| = |Y Z|,
then the angular measures of the arcs WX and Y Z are the same. To see this, note that
4OWX ≡ 4OY Z by the SSS theorem, since |OW | = |OY | and |OX| = |OZ| because they
are all radii of the same circle, and we are given |WX| = |Y Z|. In particular, the central
angles ∠WOX and ∠Y OZ are congruent, which means that the angular measures of the
arcs WX and Y Z are the same.
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Now, using the power of the point theorem, we know that |AP ||AP ′| = |AQ||AQ′|. But
|AP | = |PP ′| and |AP ′| = 2|PP ′| since P is the midpoint of the segment AP ′, and similarly
|AQ| = |QQ′| and |AQ′| = 2|QQ′|; therefore we conclude that |PP ′| ·2|PP ′| = |QQ′| ·2|QQ′|,
which implies that |PP ′| = |QQ′|. From the fact proved in the previous paragraph, we see
that the angular measures of the arcs PP ′ and QQ′ are the same. But by the Star Trek
Lemma, ∠PQP ′ is half the measure of the arc PP ′, while ∠QPQ′ is half the measure of the
arc QQ′; therefore ∠PQP ′ = ∠QPQ′ as desired.

VII. Given a triangle 4ABC, let D be a point on BC, E a point on AC, and F a point on
AB. Suppose that |AE| = 3, |AF | = 4, |BD| = 6, |BF | = 8, and |CD| = 9.

(a) What are the possible values of |CE|?
(b) If the lines AD, BE, and CF all intersect in a single point, what is the value of

|CE|?
(a) We have |AB| = |AF | + |FB| = 12 and |BC| = |BD| + |DC| = 15, and also

|AC| = |AE|+ |CE| = 3+ |CE|. By the triangle inequality, we must have 3+ |CE| =
|AC| ≤ |AB|+ |BC| = 12+15 = 27, or in other words |CE| ≤ 24. We must also have
15 = |BC| ≤ |BA|+|AC| = 12+(3+|CE|) = 15+|CE|, which in this case only gives
us the obvious inequality |CE| ≥ 0. The triangle inequality |AB| ≤ |AC| + |BC| is
equally unhelpful in this case (we obtain |CE| ≥ −6). Therefore the only restriction
is that 0 ≤ |CE| ≤ 24; and if we want to restrict to non-degenerate triangles (those
in which the three vertices don’t all lie on a line), then we need 0 < |CE| < 24 with
strict inequality.

(b) By Ceva’s theorem,
|AF |
|FB|

|BD|
|DC|

|CE|
|EA| = 1,

or in other words, |CE| = |FB||DC||EA|/|AF ||BD| = 8 · 9 · 3/(4 · 6) = 9.

VIII. (Baragar, p. 110, #5.13) Find formulas for F , V , and E in terms of m and n for a
Platonic solid with m n-gons at each vertex.

Since each face has n edges and each edge adjoins two faces, we have 2E = nF . Since each
face has n vertices and each vertex belongs to m faces, we also have mV = nF . Using this, the
Euler formula becomes 2 = F +nF/m−nF/2, which implies that F = 4m/(2m+2n−mn).
The first two equations then show that E = 2mn/(2m+2n−mn) and V = 4n/(2m+2n−mn).
(Notice that if mn ≥ 2m + 2n, then the denominator is either zero or negative, and hence
no such Platonic solid exists.)

IX. Name all (three-dimensional) regular polyhedra, sometimes called “Platonic solids”.
Which ones are dual to each other? Explain.

The answer is in Chapter 5 of the textbook. It is important to understand how to form the
dual to a convex polyhedron and why this makes the cube and the octahedron, for example,
each other’s duals.

X. How many edges, vertices, triangular faces, and pentagonal faces are there on the snub
dodecahedron, which is represented by (3,3,3,3,5)? What about its dual?

The textbook (Baragar, page 109) tells us that there are F5 = 12 pentagonal faces on the
snub dodecahedron, and also gives us the equations V = 5F5 = 3F3/4 and E = (3F3+5F5)/2.
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We quickly find V = 60, F3 = 80, and E = 150, so the snub dodecahedron has 60 vertices,
150 edges, and 80 triangular faces for a total of 92 faces.

The dual of a convex polyhedron is formed by having one vertex for every face of the
original polyhedron, and one face for every vertex. In this case, the dual polyhedron will
have 92 vertices and 60 faces (and 150 edges again, since the equation V − E + F = 2
still holds). Since each vertex of the original polyhedron is adjacent to five other vertices,
this means that each face of the dual polyhedron is adjacent to five other faces; in other
words, each face of the dual polyhedron is a pentagon. We can also say that 80 of the
dual polyhedron’s vertices belong to 3 pentagons, while the other 12 vertices belong to 5
pentagons. (Hence the dual polyhedron is not semiregular. But it’s still nice.)

HYPERBOLIC GEOMETRY

XI. For this question, “draw” means “draw, with reasonable accuracy, a picture using the
Poincaré half-plane model of the hyperbolic plane”. For this question, do not allow any of
your hyperbolic lines to look like vertical Euclidean lines.

(a) Draw three lines L, M, and N such that L and M are parallel to each other, L and
N are ultraparallel to each other, and M and N intersect each other. (Be sure to
label the lines correctly.)

(b) Draw a quadrilateral ABCD such that each of its four angles is less than 30◦. (Be
sure that all four vertices really are points in the hyperbolic plane.)

(c) Draw a line L through a point P , and draw the image of L under the isometry (of the
hyperbolic plane) that is a rotation around P through a 120◦ angle. Mark the 120◦

angle in your drawing, and label the line L to distinguish it from its image line.

L
MN

A B C D
L

P

120◦

XII. Suppose that in the Poincaré half-plane, the line AB is an arc of a semicircle with one
endpoint at the real number x. Prove that the horizontal translation z 7→ z − x followed by
inversion in the unit circle is an isometry of the Poincaré half-plane that sends the line AB
to a vertical line.

After the horizontal translation, the line AB is a Euclidean semicircle with one endpoint
at the origin and the other at some real number w, say. The image of the whole circle under
inversion in the unit circle is either a circle or a line. On the other hand, the image of the
whole circle under inversion in the unit circle only intersects the real axis once, namely at
the point 1/w. Furthermore, it is perpendicular to the x-axis there, since the original circle
was perpendicular to the x-axis at w; in particular, the image cannot be a circle that it
tangent to the x-axis. Since any circle that is not tangent to a line must intersect that line
in 0 or 2 points, the image cannot be a circle at all; that is, the image must be a straight
line. And since the original circle was perpendicular to the x-axis, the resulting line must
also be perpendicular to the x-axis, that is, it is a vertical line. (One can also solve this
problem simply by noting that a semicircle with one endpoint at the origin has the equation
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(x − r)2 + y2 = r2 for some real number r, and computing the image of any point under
inversion in the unit circle and noticing that the real part of the answer is the constant 1/2r.)

XIII. Find the distance between 15i and −7 + 8i in the Poincaré half-plane.

First we find the Euclidean semicircle that makes up the hyperbolic line between the two
points 15i and −7 + 8i; that circle turns out to be centered at 8 and have radius 17, so
that its endpoints are −9 and 25. Then we can translate horizontally by 9, sending the two
points to 9+15i and 2+8i, and then invert in the unit circle, sending them to 1

34
+ 5

102
i and

1
34

+ 2
17

i, respectively. The distance between the two points is thus | ln
(

2
17

/ 5
102

)| = ln 12
5
. Or,

we can simply calculate directly that the cross ratio (15i,−7 + 8i;−9, 25) equals 12
5
, which

gives the distance as | ln(15i,−7 + 8i;−9, 25)| = ln 12
5

as well.

XIV. Using the definitions of the hyperbolic trigonometry functions, prove that cosh2 x −
sinh2 x = 1.

Since cosh x = (ex + e−x)/2 and sinh x = (ex − e−x)/2, we have

cosh2 x − sinh2 x =
(ex + e−x

2

)2

−
(ex − e−x

2

)2

=
(ex)2 + 2exe−x + (e−x)2

4
− (ex)2 − 2exe−x + (e−x)2

4

=
e2x + 2 + e−2x

4
− e2x − 2 + e−2x

4
=

2 + 2

4
= 1.

XV. Let 4ABC be a right triangle with right angle ∠C. Suppose that |CB| = ln 5 and
|CA| = ln 13. Verify, using the Hyperbolic Pythagorean Theorem cosh c = cosh a cosh b, that
|AB| = ln(17 + 12

√
2).

We calculate:

cosh a = cosh(ln 5) =
eln 5 + e− ln 5

2
=

5 + 1/5

2
=

26/5

2
=

13

5

cosh b = cosh(ln 13) =
eln 13 + e− ln 13

2
=

13 + 1/13

2
=

170/13

2
=

85

13
,

and therefore cosh a cosh b = (13/5)(85/13) = 17; thus we need to check that cosh c = 17 as
well. Now

cosh c = cosh(ln(17 + 12
√

2))

=
eln(17+12

√
2) + e− ln(17+12

√
2)

2
=

(17 + 12
√

2) + 1/(17 + 12
√

2)

2
.

We calculate that

1

17 + 12
√

2
=

17 − 12
√

2

(17 + 12
√

2)(17 − 12
√

2)
=

17 − 12
√

2

172 − (12
√

2)2
=

17 − 12
√

2

289 − 144 · 2 = 17 − 12
√

2.

Therefore

cosh c =
(17 + 12

√
2) + 1/(17 + 12

√
2)

2
=

(17 + 12
√

2) + (17 − 12
√

2)

2
=

34

2
= 17,

as asserted.
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