
Math 308, Section 101
Solutions to Study Questions for First Midterm

(in class Wednesday, October 6, 2004)

I. State the three axioms concerning isometries (Axioms 6–8).

Axiom 6: For any two points P and Q, there exists an isometry f with f (P) = Q.
Axiom 7: For any three points P, Q, and R satisfying |PQ| = |PR|, there exists an isometry

f with f (P) = P and f (Q) = R.
Axiom 8: For any line `, there is an isometry that fixes every point on ` and does not fix any

other points.

II. State the definition of angle congruence.
∠ABC is congruent to ∠A′B′C′ if there exists an isometry f satisfying:
• f (B) = B′;
• f (A) is on the ray B′A′;
• f (C) is on the ray B′C′.

III. Using the definition of sin A, prove that sin 60◦ =
√

3/2. Do not assume properties of any
particular triangle unless you prove them.

Draw an equilateral triangle 4ABC with |AB| = |BC| = |CA| = 1. Let D be the
midpoint of the segment of BC, so that AD is a median of 4ABC and |BD| = |DC| = 1

2 .
We also have |AB| = 1 = |AC| and trivially |AD| = |AD. Therefore, by the SSS theorem,
4ABD ≡ 4ACD. This implies that ∠ADB = ∠ADC, and since those two angles are
adjacent, we conclude that they are right angles, so that ∠ADB = 90◦ and 4ADB is a
right triangle.

We also know that ∠ABD = 60◦. (To see this, note that 4ABC ≡ 4BCA by the SSS
theorem. Therefore ∠ABC = ∠BCA and also ∠BCA = ∠CAB. Since ∠ABC + ∠BCA +
∠CAB = 180◦, we conclude that each angle equals 60◦.) Therefore sin 60◦ = |AD|/|AB|
by the definition of sine. Now |AB| = 1 and |BD| = 1

2 , and so

|AD| =
√
|AB|2 − |BD|2 =

√
12 −

( 1
2

)2 =
√

3
4 =

√
3

2

by the Pythagorean theorem. We conclude that sin 60◦ =
√

3
2 /1 =

√
3

2 .

IV. (Baragar, p. 29, #1.45) In the quadrilateral ABCD in Figure 1.20(b), AD is parallel to BC,
∠C = 2∠A, |CD| = 3, and |BC| = 2. What is |AD|?

Extend the lines AB and CD to meet at P. Then ∠BCD is an exterior angle of 4BCP,
and so ∠BCD = ∠CPB + ∠CBP. On the other hand, since AD and BC are parallel, the
corresponding angles ∠A and ∠CBP are equal, and hence ∠BCD = 2∠CBP by hypothe-
sis. We therefore have

∠CPB = ∠BCD −∠CBP = 2∠CBP −∠CBP = ∠CBP.

We conclude from the converse to pons asinorum that |CP| = |CB| = 2, and so |PD| =
|PC|+ |CD| = 2 + 3 = 5.
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Now we have ∠PBC = ∠PAD and ∠PCB = ∠PDA (corresponding angles of parallel
lines) and ∠P = ∠P. Therefore 4PBC ∼ 4PAD by definition. By Corollary 1.7.4, we
conclude that

|AD|
|BC| =

|PD|
|PC| .

Since |BC| = 2, |PD| = 5, and |PC| = 2, we conclude that |AD| = 5.

V. (Baragar, p. 40, #1.76) In Figure 1.34(b), suppose |AC′| = |C′B| = |CE| = 2, |CD| = 3, and
|BF| = 1. What is the area of 4ABC?

By the Power of the Point theorem (in fact, the version proved in problem IV of Home-
work #3) applied to B, we know that |BC′||BA| = |BF||BD|. We have |BA| = |BC′| +
|C′A| = 2 + 2 = 4, and so 2 · 4 = 1 · |BD|, yielding |BD| = 8. Since |BD| = |BF|+ |FC|+
|CD| = 1 + |FC|+ 3, we have |FC| = 4. Now applying the Power of the Point theorem to
C, we have |AC||CE| = |FC||CD|. We know three of these lengths, and so |AC| · 2 = 4 · 3,
yielding |AC| = 6. We find that 4ABC has side lengths |AB| = 4, |AC| = 6, and
|BC| = |BF|+ |FC| = 1 + 4 = 5. Therefore the semiperimeter is s = 1

2(6 + 4 + 5) = 15
2 .

By Heron’s formula, the area of the triangle is

|4ABC| =
√

s(s − a)(s − b)(s − c) =
√

15
2 ( 15

2 − 6)( 15
2 − 4)( 15

2 − 5)

=
√

15
2 · 3

2 ·
7
2 ·

5
2 =

15
√

7
4

.

VI. (Baragar, p. 57, #1.123) Use Ceva’s theorem to show that the altitudes intersect in a common
point. (Hint: If CF is an altitude of 4ABC, then |AF| = b cos A. . . .)

We begin by assuming that 4ABC has only acute angles, remarking on the other cases
at the end. Let AD, BE, and CF be the altitudes of 4ABC; since the triangle is acute,
all three points D, E, and F lie on the opposite side of the triangle (as opposed to on the
extensions of those sides). Moreover, we have the following formulas, all straight from
the definition of cosine:

|AF| = b cos A, |FB| = a cos B, |BD| = c cos B,

|DC| = b cos C, |CE| = a cos C, |EA| = c cos A.

Therefore
|AF|
|FB|

|BD|
|DC|

|CE|
|EA| =

b cos A
a cos B

c cos B
b cos C

a cos C
c cos A

= 1.

Ceva’s theorem now implies that the altitudes AD, BE, and CF all meet in a single point.
If, on the other hand, 4ABC has an obtuse angle, say ∠A > 90◦ (a triangle can have

at most one obtuse angle since the sum of all three angles is 180◦), then the two altitudes
BE and CF both meet the extended sides of the triangle rather than the sides themselves,
while the altitude AD meets the side BC. Therefore exactly one of of the three points D,
E, and F are on the sides of the triangle, and Ceva’s theorem still applies. The only change
to the above argument needed is to replace cos A with | cos A| everywhere.

(If 4ABC has a right angle, say ∠A, then it is easy to see that all three altitudes intersect
at A.)
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VII. Let the quadrilateral ABCD be a trapezoid: the sides AB and CD are parallel, but the sides
AD and BC are not parallel. Suppose that |AD| = |BC|. Prove that ∠ADC = ∠BCD.

Since the lines AD and BC are not parallel, they meet in a single point P when extended.
By Theorem 1.7.1, the fact that AB and CD are parallel implies that

|PA|
|PD| =

|PB|
|PC| .

We first assume that C is between P and B and that D is between P and A, remarking
on the other possible cases at the end. Since C is between P and B, we have |PB| =
|PC|+ |CB|; similarly, |PA| = |PD|+ |DA|. Thus our previous equation becomes

1 +
|DA|
|PD| =

|PD|+ |DA|
|PD| =

|PC|+ |CB|
|PC| = 1 +

|CB|
|PC| .

Subtracting one from both sides and cross-multiplying, we get |DA||PC| = |CB||PD|. But
|AD| = |BC| by assumption, and so |PC| = |PD|. We conclude from pons asinorum that
∠PCD = ∠PDC, which implies that ∠BCD = 180◦ −∠PCD = 180◦ −∠PDC = ∠ADC
as desired.

If B is between P and C, then we instead get |PC| = |PB|+ |BC|, or equivalently |PB| =
|PC| − |CB|; similarly if A is between P and D, we have |PA| = |PD| − |DA|. The relevant
equation is thus

1 − |DA|
|PD| =

|PD| − |DA|
|PD| =

|PC| − |CB|
|PC| = 1 − |CB|

|PC| ,

from which we again conclude that |PC| = |PD| and hence ∠PCD = ∠PDC. In this case
we are done immediately, since ∠PCD and ∠BCD are different names for the same angle,
as are ∠PDC and ∠ADC.

[The case where C is between P and B but A is between P and D is impossible, since
we would get |DA||PC| = −|CB||PD|, which is impossible since all lengths involved are
positive. The case where B is between P and C but D is between P and A is impossible
for the same reason. Finally, P can never be between B and C or between A and D, for
this would have the opposite sides BC and AD intersecting in the middle of a side.]

VIII. Let A, B, C, D, P, and Q be distinct points in the plane. Suppose that f is an isometry such
that f (A) = C, f (B) = D, and f (P) = Q. Prove that P is on the perpendicular bisector of the
segment AB if and only if Q is on the perpendicular bisector of the segment CD.

By problem IV on Homework #2, we know that the perpendicular bisector of a line seg-
ment is the same as the set of all points that are equidistant from the segment’s endpoints.
Therefore:

• P is on the perpendicular bisector of the segment AB if and only if |AP| = |BP|;
• Q is on the perpendicular bisector of the segment CD if and only if |CQ| = |DQ|.

However, the isometry f preserves distances; in particular, |AP| = | f (A) f (P)| = |CQ|
and |BP| = | f (B) f (P)| = |DQ|. Therefore:

• |AP| = |BP| if and only if |CQ| = |DQ|.
The problem follows immediately from these three equivalences.

[One can certainly solve this problem by splitting it up into its “if” and “only if” direc-
tions and proving them separately.]
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IX.
(a) Suppose that the incenter I of 4ABC is the same as the centroid G of 4ABC. Prove that

4ABC is equilateral.
(b) Suppose that the circumcenter O of 4ABC is the same as the orthocenter H of 4ABC.

Prove that 4ABC is equilateral.

(a) Let D be the midpoint of BC, so that |BD| = |DC|. The centroid G is on the median
AD by definition. Since I = G, we see that AD is also the angle bisector of ∠BAC.
By the Angle Bisector Theorem (Exercise 1.43),

|AB|
|AC| =

|BD|
|DC| = 1,

or |AB| = |AC| in other words. The same argument, using the midpoint E of AC
(so that BE is both a median and an angle bisector), shows that |AB| = |BC| as
well. Therefore, 4ABC is equilateral.

(b) Let D be the midpoint of BC, so that |BD| = |DC|. Since the circumcenter O is
on all of the perpendicular bisectors of 4ABC, and since there is only one line
through D that is perpendicular to BC (this follows from Theorem 1.4.3), we know
that OD is perpendicular to BC. On the other hand, we also know that H = O,
where H is the orthocenter, the intersection of the altitudes. In particular, the line
AH is the altitude perpendicular to BC.

Now both AH and OD are lines perpendicular to BC, and they meet at the com-
mon point H = O, and so again we conclude that the lines AH and OD are
the same. In particular, AD is the perpendicular bisector of BC. We thus have
∠ADB = ∠ADC = 90◦, and also |BD| = |DC| and |AD| = |AD|. Therefore, by
the SAS theorem, 4ADB ≡ 4ADC. We conclude from this that |AB| = |AC|. The
same argument, concentrating on the midpoint E of AC, shows that |AB| = |BC|
as well. Therefore, 4ABC is equilateral.
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