
Math 308, Section 101
Solutions for Homework #1

(due September 15, 2004)

I. Prove that the composition of two isometries is an isometry. In other words, suppose that the
two functions f and g from the plane to itself are both isometries, and define another function h
from the plane to itself by h(P) = f (g(P)); prove that h is an isometry.

To show that h is an isometry, we need to show that the definition of isometry holds for
h, namely that for any two points P and Q, we have d(h(P), h(Q)) = d(P, Q). Notice that
h(P) = f (g(P)) and h(Q) = f (g(Q)); thus we need to prove that d( f (g(P)), f (g(Q))) =
d(P, Q).

Since g is an isometry, we know that

d(g(P), g(Q)) = d(P, Q).

Since f is an isometry, we know that d( f (A), f (B)) = d(A, B) for any points A and B.
Choosing A = g(P) and B = g(Q), we obtain

d( f (g(P)), f (g(Q))) = d(g(P), g(Q)).

These two equalities together imply that d( f (g(P)), f (g(Q))) = d(P, Q), as desired.

II. Suppose that the isometry f fixes two distinct points A and B. Prove that it fixes every point
C on the line AB. (Note: to say that f fixes a point P is simply to say that f (P) = P.) (Hint: use
the statement of Exercise 1.11, which we mentioned in class. Split into cases depending on which
of the three points A, B, C is between the other two.)

Let f be an isometry that fixes two distinct points A and B, and let C be any point on
the line AB. We need to show that f (C) = C. If C = A or C = B, then f fixes C by
assumption; so we can assume that one of the following holds:

1. C is on the segment AB; or
2. A is on the segment BC; or
3. B is on the segment CA.

We show the proof of case 1; the other cases are very similar.
So suppose that C is on the segment AB. By Exercise 1.11, we know that |AB| =

|AC|+ |CB|. Define C′ = f (C); we want to show that C′ = C. We know that f (A) = A
and f (B) = B; since f is an isometry, we have d(A, C) = d( f (A), f (C)) = d(A, C′) (in
other words, |AC| = |AC′|) and similarly |CB| = |C′B|. By substituting into the earlier
equation, it follows that |AB| = |AC′|+ |C′B|.

By Exercise 1.11 again, we conclude that C′ is on the segment AB. In particular, both
C and C′ are on the ray AB, and |AC| = |AC′| as we have already seen. Since there is
exactly one point on a ray at a given distance from its vertex (as said in class), the only
possibility is that C = C′, as needed. (It is also possible to conclude that C = C′ from the
version of Lemma 1.3.2 stated in class, since both C and C′ lie on the line AB and also on
the intersection of the circles C|AC|(A) and C|CB|(B).)

(In cases 2 and 3, the relevant starting equations are |AB| = |BC| − |CA| and |AB| =
|CA| − |BC|, respectively, both of which follow from Exercise 1.11 and a simple algebraic
rearrangement. Otherwise, the proofs are essentially identical.)
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III. Given a line ` and a point C that is not on `, let f be the isometry that fixes every point on `
and no other points, and let C′ = f (C). Prove that ` is the perpendicular bisector of the segment
CC′. Conclude that there exists a point D on ` such that the segment CD is perpendicular to `.

Let f be the reflection through ` described in the statement of the problem (as guaran-
teed by Axiom 8), let C be a point not on `, and let C′ = f (C). We know that C and C′ are
on opposite sides of `, so let D be the intersection of the segment CC′ and the line `. We
need to show that:

1. ` bisects CC′, that is, |CD| = |DC′|; and
2. ` is perpendicular to CC′.

To prove #1, we note that f (D) = D since f fixes all the points of `. By the definition of
isometry, we have d(C, D) = d( f (C), f (D)) = d(C′, D), which proves |CD| = |C′D| as
desired.

As for #2, let P be any point of ` other than D. Since f fixes the points of `, we have
f (D) = D and f (P) = P. We also know that f (C) = C′. By the definition of angle
congruence, we see that ∠PDC = ∠PDC′ (since certainly P is on the ray DP and C′ is on
the ray DC′). Since these two congruent angles are adjacent angles, we conclude from the
definition of perpendicularity that ` and the line CC′ are perpendicular. We also see now
that D is a point on ` such that ` is perpendicular to CD, establishing the last assertion of
the problem.

(Note that this problem is very similar to Exercise 1.17 in the textbook.)

IV. Prove the “SAS Theorem”: if 4ABC and 4A′B′C′ are triangles with |AB| = |A′B′| and
|BC| = |B′C′| and with angle ABC congruent to angle A′B′C′, then 4ABC ≡ 4A′B′C′.
(Hint: the fact that two angles are congruent means that there exists an isometry with certain
properties—start there.)

Since ∠ABC = ∠A′B′C′, by the definition of angle congruence there exists an isom-
etry f such that f (B) = B′, and f (A) is on the ray B′A′ and also f (C) is on the ray
B′C′. On the other hand, d(B′, f (A)) = d( f (B), f (A)) = d(B, A) since f is an isometry,
while d(B, A) = d(B′, A′) by hypothesis. These two equalities imply that d(B′, f (A)) =
d(B′, A′). Since both f (A) and A′ are on the ray B′A′, and since there is only one point on
a ray at a given distance from its vertex, we conclude that f (A) = A′.

The same argument (changing all the A’s to C’s) shows that f (C) = C′ as well. Since
f (A) = A′, f (B) = B′, and f (C) = C′, the definition of triangle congruence tells us that
4ABC ≡ 4A′B′C′.
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