
Math 308, Section 101
Solutions for Homework #2

(due September 22, 2004)

I. Prove that if 4ABC ≡ 4A′B′C′, then ∠A = ∠A′. (In other words, given that the definition
of triangle congruence is satisfied, prove that the definition of angle congruence is satisfied.)

Since 4ABC ≡ 4A′B′C′, there exists an isometry f such that f (A) = A′, f (B) = B′,
and f (C) = C′. In particular, f (A) = A′; and f (B) = B′ certainly lies on the ray A′B′,
and f (C) = C′ certainly lies on the ray A′C′. Therefore the isometry f satisfies the three
necessary properties in the definition of angle congruence, and so ∠BAC = ∠B′A′C′ as
desired. (This problem wasn’t assigned because it was difficult—it was assigned to make
the point that we can’t rely on “intuitive” facts about geometry unless we prove them.)

II. (Baragar, p. 24, #1.34) Suppose two lines intersect at P inside a circle and meet the circle at A
and A′ and at B and B′, as shown in Figure 1.14(a). Let α and β be the measures of the arcs A′B′

and AB respectively. Prove that

∠APB =
α + β

2
.

Draw the segment AB′. By the Star Trek Lemma, ∠AB′B equals half the angular mea-
sure of the arc AB, and so ∠AB′B = β/2; similarly, ∠B′AA′ equals half the angular
measure of the arc A′B′, and so ∠B′AA′ = α/2. Now ∠APB is the exterior angle to
the triangle 4AB′P, and so its measure equals the sum of the measures of the other two
interior angles (Corollary 1.4.7). Therefore,

∠APB = ∠AB′P + ∠B′AP = ∠AB′B + ∠B′AA′ =
β

2
+

α

2
=

α + β

2
,

as claimed.

III. (Baragar, p. 25, #1.40) Let E be a point inside a square ABCD such that 4BCE is an equilat-
eral triangle, as in Figure 1.16(b). Show that ∠EAD = 15◦.

We first remark that all three angles of an equilateral triangle 4BCE must measure
60◦. To see this, note that |BC| = |BE| since the triangle is equilateral, and so ∠BCE =
∠BEC by pons asinorum. Similarly, |CB| = |CE| and so ∠CBE = ∠CEB by pons asinorum.
Therefore all three angles of 4BCE are congruent, and their measures sum to 180◦ by
Theorem 1.4.6; we conclude that each of the three angles is 60◦. (Another way of showing
this is by using the SSS theorem to prove that 4BCE ≡ 4CEB, for example.)

Now ∠ABC is a right angle since ABCD is a square, and so ∠ABE = ∠ABC−∠BCE =
90◦ − 60◦ = 30◦. Since the measures of the angles of the triangle 4ABE sum to 180◦, we
see that

∠BEA + ∠BAE = 150◦.
On the other hand, |BA| = |BC| since ABCD is a square, while |BC| = |BE| since 4BCE
is equilateral. Therefore |BA| = |BE|. By pons asinorum once more, we see that

∠BEA = ∠BAE.

These two equations together imply that ∠BAE = 75◦. Since ∠EAD is a right angle,
again by the fact that ABCD is a square, we conclude that ∠EAD = ∠BAD −∠BAE =
90◦ − 75◦ = 15◦, as asserted.
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IV. Show that the perpendicular bisector of a line segment is the set of all points equidistant from
the two endpoints of the segment. In other words, let the line ` be the perpendicular bisector of the
segment AB. For any point C, prove that C is on the line ` if and only if |AC| = |BC|.

Suppose first that C is a point on `; we want to show that |AC| = |BC|. Let M be
the intersection of the segment AB and the line `. Since ` bisects the segment AB, we
have |AM| = |BM|. Also, ∠AMC = ∠BMC since both are right angles, and clearly
|CM| = |CM|. Therefore, by the SAS Theorem, the two triangles 4AMC and 4BMC
are congruent. In particular, the corresponding sides AC and BC are congruent, that is,
|AC| = |BC|. (It is also possible to show this using the Pythagorean Theorem.)

Conversely, suppose that |AC| = |BC|; we want to show that C is on the line `. Again,
we have |AM| = |BM| and |CM| = |CM|. Therefore, by the SSS Theorem, the two trian-
gles 4AMC and 4BMC are congruent. In particular, the corresponding angles ∠AMC
and ∠BMC are congruent, by Problem I. Since these two angles are adjacent, we conclude
that both are right angles and that AB is perpendicular to MC. Now both ` and the line
MC are perpendicular to the line AB. If ` and MC were not the same line, then they would
be parallel by Theorem 1.4.3; however, they intersect at M, so they can’t be parallel. The
only possibility is that ` and MC are indeed the same line; in particular, C is a point on `,
as claimed.

V. Suppose that C is a circle with center O, that P is a point on the circle C, and that ` is a line
through P. Prove that ` is tangent to C if and only if ` is perpendicular to the radius OP of C.

Suppose first that ` is perpendicular to OP. Let Q be any point on ` other than P.
Then by the Pythagorean Theorem, |OQ|2 = |OP|2 + |PQ|2. In particular, |PQ|2 > 0, so
|OQ|2 > |OP|2 and hence |OQ| > |OP|. Therefore the distances from O to Q and P are
different, so Q cannot be on the circle centered at O that goes through P, which is C itself.
We have shown that no other point on ` other than P lies on C; therefore ` is tangent to C
by definition.

Suppose now that ` is not perpendicular to OP. Choose a point D on ` such that OD
is perpendicular to ` (as guaranteed by problem III on Homework #1). Let f be the re-
flection through the line OD, as described in Axiom 8. Since P is not on the line OD, the
isometry f does not fix P but sends it to some other point P′. On the other hand, since
` is perpendicular to OD, points on ` are sent to other points on ` under this reflection,
and so P′ lies on `. Moreover, since f is an isometry, d(O, P) = d( f (O), f (P)) = d(O, P′),
and so P′ lies on the circle C. In summary, we have found a second point P′ 6= P on the
intersection of ` and C, and so ` is not tangent to C.

(Notice that for the second half of the proof, we established “if ` is tangent to C, then `
is perpendicular to OP” by proving the contrapositive, namely “if ` is not perpendicular
to OP, then ` is not tangent to C”.)
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VI. (Baragar, p. 23, #1.33) Suppose AT is a line segment that is tangent to a circle. Prove that
∠ATB is half the measure of the arc TB which it subtends. Do this by picking a point C on the
circle such that ∠TCB subtends the arc TB (as in Figure 1.13(b)). Show that ∠ATB = ∠TCB.
(Hint: don’t just pick a random point C—pick an especially convenient point C.)

Note that it doesn’t matter what point C we choose—the Star Trek Lemma tells us that
the measure of ∠TCB is half the angular measure of the arc TB, no matter what C is. So
we choose C directly opposite B on the circle, so that BC is a diameter of the circle; in
particular, the center O of the circle lies on the segment BC.

Again by the Star Trek Lemma, ∠TBC equals half the angular measure of the arc
TC, and ∠TCB equals half the angular measure of the arc TB. But together, the an-
gular measures of the arcs TC and TB add to 180◦, since BC is a diameter. Therefore,
∠TBC + ∠TCB = 90◦, which we rewrite as ∠TCB = 90◦ −∠TBC.

Now OT = OB since both are radii of the same circle; therefore, by pons asinorum, we
have ∠TBC = ∠OTB. Substituting this into the previous equation gives

∠TCB = 90◦ −∠OTB.

On the other hand, since TA is tangent to the circle at P, we know from Problem V that
TA and OT are perpendicular. In particular, this gives ∠ATB + ∠BTO = ∠ATO = 90◦,
or

∠ATB = 90◦ −∠OTB.
Comparing these two equations, we conclude that ∠ATB = ∠TCB.

(Another similarly straightforward solution starts by choosing C so that TC, rather
than BC, is a diameter. Yet another solution, which doesn’t depend on C being chosen in
a particular way, is to use pons asinorum on the triangle 4OTB, and the Star Trek Lemma
to compare ∠TCB and ∠TOB, to show that ∠OTB = 90◦−∠TCB; problem V tells us that
∠OTB = 90◦ −∠ATB as well.)
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