Math 308, Section 101 Solutions for Homework #3 (due September 29, 2004)

I. (Baragar, p. 28, #1.42) Let $\triangle ABC$ be an arbitrary triangle. Let A', B', and C' be the midpoints of the opposite sides. Draw lines through A', B', and C' that make an angle of 60° with each side, as in Figure 1.19(a). These lines intersect at A'', B'', and C'' as shown. Prove that $\triangle A''B''C''$ is similar to $\triangle ABC$.

We use the fact that the four angles in a quadrilateral add to 360° . In particular, $\angle A'BC' + \angle BC'B'' + \angle C'B''A' + \angle B''A'B = 360^{\circ}$. But $\angle B''A'B = 60^{\circ}$ by assumption, and $\angle BC'B'' = 180^{\circ} - \angle AC'A'' = 180^{\circ} - 60^{\circ} = 120^{\circ}$. Therefore $\angle A'BC' + \angle C'B''A' = 360^{\circ} - 60^{\circ} - 120^{\circ} = 180^{\circ}$. On the other hand, $\angle C'B''A' + \angle A'B''A'' = 180^{\circ}$ as well. We conclude that $\angle A'BC' = \angle A'B''A'$, which is to say that $\angle CBA = \angle C''B''A''$. The same reasoning proves that $\angle ACB = \angle A''C''B''$, and since the angles in both triangles $\triangle ABC$ and $\triangle A''B''C''$ must add to 180° , we see that $\angle BAC = \angle B''A''C''$ as well. This shows that $\triangle ABC \sim \triangle A''B''C''$, as desired.

(Note that we never used the fact that the three indicated angles measured exactly 60° —we only needed them all to be congruent to one another. We also never used at all the fact that A', B', and C' were the midpoints of their sides; any points on those sides would be fine.)

II. (Baragar, p. 29, #1.43) In an arbitrary triangle $\triangle ABC$, let the interior angle bisector at A intersect the side BC at D. Show that

$$\frac{|BD|}{|DC|} = \frac{|AB|}{|AC|}.$$

Hint: Construct the line parallel to AD and through B, as shown in Figure 1.19(b). let this intersect AC at E. Show |AB| = |AE|.

Following the hint, we consider the triangle $\triangle ABE$. Since *EB* and *AD* are parallel, we have $\angle ABE = \angle BAD$ (opposite interior angles) and $\angle AEB = \angle CAD$ (corresponding angles). But *D* was chosen so that $\angle BAD = \angle CAD$, and so we conclude that $\angle AEB = \angle ABE$. Therefore, by the converse to *pons asinorum* (Exercise 1.24), we have |AE| = |AB|.

On the other hand, by Theorem 1.7.1, we find that

$$\frac{|CE|}{|CA|} = \frac{|CB|}{|CD|}.$$

Because |CE| = |CA| + |AE| and |CB| = |CD| + |DB| by the "equality" case of the triangle inequality, this becomes

$$1 + \frac{|AE|}{|CA|} = \frac{|CA| + |AE|}{|CA|} = \frac{|CD| + |DB|}{|CD|} = 1 + \frac{|DB|}{|CD|}$$

Finally, we may subtract 1 from each side of the equation and use the substitution |AE| = |AB| from the first paragraph to get

$$\frac{|AB|}{|CA|} = \frac{|DB|}{|CD|},$$

which finishes the proof.

III. (Baragar, p. 29, #1.44) The pentagon in Figure 1.20(a) is regular and each side has length one. Show that

$$\frac{|AF|}{|FD|} = \frac{1+\sqrt{5}}{2}.$$

As a first step, we prove that the segments *AC* and *ED* are parallel. We saw in class that each angle of a regular pentagon measures 108°. In particular, $\angle BAC$ and $\angle BCA$ must add to $180^\circ - \angle ABC = 180^\circ - 108^\circ = 72^\circ$. However, since |AB| = |BC|, the triangle $\triangle ABC$ is isosceles, and so $\angle BAC = \angle BCA$, which forces $\angle BAC = \frac{1}{2} \cdot 72^\circ = 36^\circ$. Therefore $\angle CAE = \angle BAE - \angle BAC = 108^\circ - 36^\circ = 72^\circ$. Finally, we have $\angle CAE + \angle AED = 72^\circ + 108^\circ = 180^\circ$, which implies at last that *AC* and *ED* are parallel (this follows from Euclid's version of Axiom 5, as described in class).

Now that *AC* and *ED* are parallel, we quickly see that $\angle CAF = \angle FDE$ and $\angle ACF = \angle FED$ (alternate interior angles) and that $\angle AFC = \angle DEF$ (vertical angles), this proving that $\triangle ACF \sim \triangle DEF$. Therefore by Corollary 1.7.4,

$$\frac{|AF|}{|FD|} = \frac{|AC|}{|ED|} = \frac{|AC|}{1} = |AC|.$$

On the other hand, because the pentagon is regular, we certainly have |AE| = |AB|, $\angle AED = \angle ABC$, and |ED| = |BC|, and therefore $\triangle AED \equiv \triangle ABC$ by the SAS theorem. It follows that |AC| = |AD|. But certainly |AD| = |AF| + |FD| by the "equality" case of the triangle inequality. Our equation thus becomes

$$\frac{|AF|}{|FD|} = |AF| + |FD|.$$

Finally, the argument in the first paragraph extends to show that $\angle BAC = \angle BCA = \angle DAE = \angle ADE = \angle ECD = \angle CED = 36^\circ$. Then $\angle CAF = \angle EAB - \angle DAE - \angle CAB = 108^\circ - 36^\circ - 36^\circ = 36^\circ$, and the same argument applies for $\angle ACF$. Now we can say that $\angle CAF = 36^\circ = \angle CAB$, $\angle ACF = 36^\circ = \angle ACB$, and |AC| = |AC|, and so $\triangle ACF \equiv \triangle ACB$ by the ASA theorem. In particular, |AF| = |AB| = 1, and so our equation becomes

$$\frac{1}{|FD|} = 1 + |FD|,$$

or equivalently (multipling both sides by |FD| and subtracting 1)

$$0 = |FD|^2 + |FD| - 1.$$

We have shown that the length |FD| is a root of the quadratic equation $x^2 + x - 1 = 0$. The two roots of this equation are $(\sqrt{5} - 1)/2$ and $(-\sqrt{5} - 1)/2$. Since |FD| is positive, it must be the case that $|FD| = (\sqrt{5} - 1)/2$. Finally,

$$\frac{|AF|}{|FD|} = |AF| + |FD| = 1 + \frac{\sqrt{5} - 1}{2} = \frac{\sqrt{5} + 1}{2},$$

as claimed. (Note that $|AC| = 2 \cos 36^\circ$, and so this exercise actually *proves* that $\cos 36^\circ = (1 + \sqrt{5})/4$.)

IV. (*Baragar, p. 31, #1.51*) *Theorem 1.8.1 is also true if the point P lies outside the circle, as in Figure 1.25(a). Prove it for this case.*

Since QRR'Q' is a cyclic quadrilateral (that is, all four vertices lie on a circle), its opposite angles $\angle QRR'$ and $\angle QQ'R'$ sum to 180° by Exercise 1.36. On the other hand, $\angle QRR'$ and $\angle QRP$ sum to 180° as well, and therefore $\angle QQ'R' = \angle QRP$. By the same argument, $\angle RR'Q' = \angle RQP$. Of course $\angle QPR = \angle QPR$ as well, and so $\triangle PQR \sim \triangle PR'Q'$ by the definition of similarity. By Corollary 1.7.4, we can conclude that

$$\frac{|PQ|}{|PR'|} = \frac{|PR|}{|PQ'|}$$

or |PQ||PQ'| = |PR||PR'|.

V. Let ABCD be a quadrilateral. Prove that ABCD is a parallelogram if and only if the segments AC and BD bisect each other.

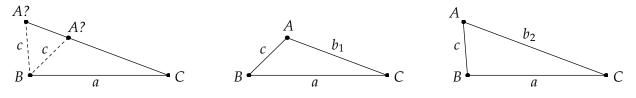
First we assume that *ABCD* is a parallelogram and prove that the diagonals *AC* and *BD* bisect each other. We begin by showing that the opposite sides *AB* and *CD* are congruent. Since *AB* and *CD* are parallel, the opposite interior angles $\angle ABD$ and $\angle CDB$ are congruent. Since *AD* and *BC* are parallel, we also have $\angle ADB = \angle CBD$. Clearly |BD| = |DB| as well, and so by the ASA theorem, $\triangle ABD \equiv \triangle CDB$. We conclude that |AB| = |CD|.

Now let *P* be the intersection of the diagonals *AC* and *BD*. Again we have two pairs of opposite interior angles that are thus congruent, namely $\angle ABP = \angle CDP$ and $\angle BAP = \angle DCP$. Furthermore, the vertical angles $\angle APB$ and $\angle CPD$ are congruent as well. Therefore, $\triangle ABP \sim \triangle CDP$. By Corollary 1.7.4, we conclude that

$$\frac{|AB|}{|CD|} = \frac{|AP|}{|CP|} = \frac{|BP|}{|DP|}.$$

However, we showed already that |AB| = |CD|. Therefore |AB|/|CD| = 1, which implies that |AP| = |CP| and |BP| = |DP|. This shows that the segments *AC* and *BD* bisect each other.

Now we assume that *AC* and *BD* bisect each other and prove that *ABCD* is a parallelogram. By hypothesis, we have |AP| = |CP| and |BP| = |DP|. Also, the vertical angles $\angle APB$ and $\angle CPD$ are congruent. Therefore $\triangle ABP \equiv \triangle CDP$ by the SAS theorem. In particular, $\angle ABP = \angle CDP$, and so the lines *AB* and *CD* are parallel by Corollary 1.4.4. The same argument, applied to the triangles $\triangle ADP$ and $\triangle BCP$, shows that *AD* and *BC* are parallel. VI. Recall that there is no "SSA theorem". In other words, let the lengths c and a of two sides of a triangle and the measure of $\angle C$ be given (for the purposes of this problem, we will assume that a > c); then the length of the third side b is generally not uniquely determined. However, there are only two possible values for b, corresponding to the two possible locations for the vertex A relative to B and C. (You don't have to prove this.) Call the two possible values b_1 and b_2 .



- (a) Prove that $b_1b_2 = a^2 c^2$ by using the power of the point C with respect to the circle $C_c(B)$.
- (b) Prove that $b_1b_2 = a^2 c^2$ by using the Law of Cosines.
- (c) Find and prove a formula for $b_1 + b_2$ in terms of a and $\angle C$.
- (a) Draw the circle of radius *c* around the point *B*. It intersects the ray coming out of *C* in the two points marked *A*? in the diagram, which are at distances b_1 and b_2 from *C*. Therefore, with respect to the circle $C_r(B)$, we have $\Pi(C) = b_1b_2$. On the other hand, the same circle intersects the line *BC* in the two points that are at distance *c* from *B*. The distances of these two points from *C* are thus a c and a + c. Therefore $\Pi(C) = (a c)(a + c) = a^2 c^2$ as well, proving that $b_1b_2 = a^2 c^2$.
- (b) The Law of Cosines is $c^2 = a^2 c^2$ as well, proving that $b_1b_2 = a^2 c^2$. (b) The Law of Cosines is $c^2 = a^2 + b^2 - 2ab \cos C$, which can be rewritten as $b^2 - (2a \cos C)b + (a^2 - c^2) = 0$. Consider the expression $f(b) = b^2 - (2a \cos C)b + (a^2 - c^2)$ as a polynomial in *b*. Both b_1 and b_2 make the equation f(b) = 0 valid (because they result in valid triangles); in other words, they are both roots of the polynomial f(b). But the product of the roots of the polynomial $x^2 + Mx + N$ is simply *N*; in this case, the product b_1b_2 of the roots must be $a^2 - c^2$. (Note: this fact about the product of the roots of a quadratic polynomial should be well-known from algebra, and it can also be recovered by expanding out $(x - r_1)(x - r_2)$ where r_1 and r_2 are the roots.)
- (c) The sum of the roots of a polynomial $x^2 + Mx + N$ is -M. Therefore, by the same argument as in part (b), we can immediately deduce that $b_1 + b_2 = 2a \cos C$. (The same conclusion can be formed by drawing the line through *B* perpendicular to the ray out of *C*, which bisects the segment between the two points called *A*? in the diagram.)