
Math 308, Section 101

Solutions for Homework #3

(due September 29, 2004)

I. (Baragar, p. 28, #1.42) Let 4ABC be an arbitrary triangle. Let A′, B′, and C′ be the midpoints
of the opposite sides. Draw lines through A′, B′, and C′ that make an angle of 60◦ with each side,
as in Figure 1.19(a). These lines intersect at A′′, B′′, and C′′ as shown. Prove that 4A′′B′′C′′ is
similar to 4ABC.

We use the fact that the four angles in a quadrilateral add to 360◦. In particular,
∠A′BC′ + ∠BC′B′′ + ∠C′B′′A′ + ∠B′′A′B = 360◦. But ∠B′′A′B = 60◦ by assumption,
and ∠BC′B′′ = 180◦ − ∠AC′A′′ = 180◦ − 60◦ = 120◦. Therefore ∠A′BC′ + ∠C′B′′A′ =
360◦ − 60◦ − 120◦ = 180◦. On the other hand, ∠C′B′′A′ + ∠A′B′′A′′ = 180◦ as well. We
conclude that ∠A′BC′ = ∠A′B′′A′, which is to say that ∠CBA = ∠C′′B′′A′′. The same
reasoning proves that ∠ACB = ∠A′′C′′B′′, and since the angles in both triangles 4ABC
and 4A′′B′′C′′ must add to 180◦, we see that ∠BAC = ∠B′′A′′C′′ as well. This shows
that 4ABC ∼ 4A′′B′′C′′, as desired.

(Note that we never used the fact that the three indicated angles measured exactly
60◦—we only needed them all to be congruent to one another. We also never used at all
the fact that A′, B′, and C′ were the midpoints of their sides; any points on those sides
would be fine.)

II. (Baragar, p. 29, #1.43) In an arbitrary triangle 4ABC, let the interior angle bisector at A
intersect the side BC at D. Show that

|BD|
|DC| =

|AB|
|AC| .

Hint: Construct the line parallel to AD and through B, as shown in Figure 1.19(b). let this
intersect AC at E. Show |AB| = |AE|.

Following the hint, we consider the triangle 4ABE. Since EB and AD are parallel, we
have ∠ABE = ∠BAD (opposite interior angles) and ∠AEB = ∠CAD (corresponding
angles). But D was chosen so that ∠BAD = ∠CAD, and so we conclude that ∠AEB =
∠ABE. Therefore, by the converse to pons asinorum (Exercise 1.24), we have |AE| = |AB|.

On the other hand, by Theorem 1.7.1, we find that

|CE|
|CA| =

|CB|
|CD| .

Because |CE| = |CA| + |AE| and |CB| = |CD| + |DB| by the “equality” case of the trian-
gle inequality, this becomes

1 +
|AE|
|CA| =

|CA| + |AE|
|CA| =

|CD| + |DB|
|CD| = 1 +

|DB|
|CD| .

Finally, we may subtract 1 from each side of the equation and use the substitution |AE| =
|AB| from the first paragraph to get

|AB|
|CA| =

|DB|
|CD| ,

which finishes the proof.
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III. (Baragar, p. 29, #1.44) The pentagon in Figure 1.20(a) is regular and each side has length one.
Show that

|AF|
|FD| =

1 +
√

5

2
.

As a first step, we prove that the segments AC and ED are parallel. We saw in class
that each angle of a regular pentagon measures 108◦. In particular, ∠BAC and ∠BCA
must add to 180◦ − ∠ABC = 180◦ − 108◦ = 72◦. However, since |AB| = |BC|, the
triangle 4ABC is isosceles, and so ∠BAC = ∠BCA, which forces ∠BAC = 1

2 · 72◦ = 36◦.
Therefore ∠CAE = ∠BAE − ∠BAC = 108◦ − 36◦ = 72◦. Finally, we have ∠CAE +
∠AED = 72◦ + 108◦ = 180◦, which implies at last that AC and ED are parallel (this
follows from Euclid’s version of Axiom 5, as described in class).

Now that AC and ED are parallel, we quickly see that ∠CAF = ∠FDE and ∠ACF =
∠FED (alternate interior angles) amd that ∠AFC = ∠DEF (vertical angles), this proving
that 4ACF ∼ 4DEF. Therefore by Corollary 1.7.4,

|AF|
|FD| =

|AC|
|ED| =

|AC|
1

= |AC|.

On the other hand, because the pentagon is regular, we certainly have |AE| = |AB|,
∠AED = ∠ABC, and |ED| = |BC|, and therefore 4AED ≡ 4ABC by the SAS theorem.
It follows that |AC| = |AD|. But certainly |AD| = |AF| + |FD| by the “equality” case of
the triangle inequality. Our equation thus becomes

|AF|
|FD| = |AF| + |FD|.

Finally, the argument in the first paragraph extends to show that ∠BAC = ∠BCA =
∠DAE = ∠ADE = ∠ECD = ∠CED = 36◦. Then ∠CAF = ∠EAB − ∠DAE −∠CAB =
108◦ − 36◦ − 36◦ = 36◦, and the same argument applies for ∠ACF. Now we can say
that ∠CAF = 36◦ = ∠CAB, ∠ACF = 36◦ = ∠ACB, and |AC| = |AC|, and so 4ACF ≡
4ACB by the ASA theorem. In particular, |AF| = |AB| = 1, and so our equation becomes

1

|FD| = 1 + |FD|,

or equivalently (multipling both sides by |FD| and subtracting 1)

0 = |FD|2 + |FD| − 1.

We have shown that the length |FD| is a root of the quadratic equation x2 + x − 1 = 0.

The two roots of this equation are (
√

5 − 1)/2 and (−
√

5 − 1)/2. Since |FD| is positive, it

must be the case that |FD| = (
√

5 − 1)/2. Finally,

|AF|
|FD| = |AF| + |FD| = 1 +

√
5 − 1

2
=

√
5 + 1

2
,

as claimed. (Note that |AC| = 2 cos 36◦, and so this exercise actually proves that cos 36◦ =

(1 +
√

5)/4.)
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IV. (Baragar, p. 31, #1.51) Theorem 1.8.1 is also true if the point P lies outside the circle, as in
Figure 1.25(a). Prove it for this case.

Since QRR′Q′ is a cyclic quadrilateral (that is, all four vertices lie on a circle), its oppo-
site angles ∠QRR′ and ∠QQ′R′ sum to 180◦ by Exercise 1.36. On the other hand, ∠QRR′

and ∠QRP sum to 180◦ as well, and therefore ∠QQ′R′ = ∠QRP. By the same argument,
∠RR′Q′ = ∠RQP. Of course ∠QPR = ∠QPR as well, and so 4PQR ∼ 4PR′Q′ by the
definition of similarity. By Corollary 1.7.4, we can conclude that

|PQ|
|PR′| =

|PR|
|PQ′| ,

or |PQ||PQ′| = |PR||PR′ |.
V. Let ABCD be a quadrilateral. Prove that ABCD is a parallelogram if and only if the segments
AC and BD bisect each other.

First we assume that ABCD is a parallelogram and prove that the diagonals AC and
BD bisect each other. We begin by showing that the opposite sides AB and CD are con-
gruent. Since AB and CD are parallel, the opposite interior angles ∠ABD and ∠CDB
are congruent. Since AD and BC are parallel, we also have ∠ADB = ∠CBD. Clearly
|BD| = |DB| as well, and so by the ASA theorem, 4ABD ≡ 4CDB. We conclude that
|AB| = |CD|.

Now let P be the intersection of the diagonals AC and BD. Again we have two pairs of
opposite interior angles that are thus congruent, namely ∠ABP = ∠CDP and ∠BAP =
∠DCP. Furthermore, the vertical angles ∠APB and ∠CPD are congruent as well. There-
fore, 4ABP ∼ 4CDP. By Corollary 1.7.4, we conclude that

|AB|
|CD| =

|AP|
|CP| =

|BP|
|DP| .

However, we showed already that |AB| = |CD|. Therefore |AB|/|CD| = 1, which implies
that |AP| = |CP| and |BP| = |DP|. This shows that the segments AC and BD bisect each
other.

Now we assume that AC and BD bisect each other and prove that ABCD is a parallel-
ogram. By hypothesis, we have |AP| = |CP| and |BP| = |DP|. Also, the vertical angles
∠APB and ∠CPD are congruent. Therefore 4ABP ≡ 4CDP by the SAS theorem. In
particular, ∠ABP = ∠CDP, and so the lines AB and CD are parallel by Corollary 1.4.4.
The same argument, applied to the triangles 4ADP and 4BCP, shows that AD and BC
are parallel.
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VI. Recall that there is no “SSA theorem”. In other words, let the lengths c and a of two sides of
a triangle and the measure of ∠C be given (for the purposes of this problem, we will assume that
a > c); then the length of the third side b is generally not uniquely determined. However, there are
only two possible values for b, corresponding to the two possible locations for the vertex A relative
to B and C. (You don’t have to prove this.) Call the two possible values b1 and b2.

A?
A?

B Ca

c c

A

B Ca

b1c

A

B Ca

b2
c

(a) Prove that b1b2 = a2 − c2 by using the power of the point C with respect to the circle
Cc(B).

(b) Prove that b1b2 = a2 − c2 by using the Law of Cosines.
(c) Find and prove a formula for b1 + b2 in terms of a and ∠C.

(a) Draw the circle of radius c around the point B. It intersects the ray coming out of C
in the two points marked A? in the diagram, which are at distances b1 and b2 from
C. Therefore, with respect to the circle Cr(B), we have Π(C) = b1b2. On the other
hand, the same circle intersects the line BC in the two points that are at distance c
from B. The distances of these two points from C are thus a− c and a + c. Therefore
Π(C) = (a − c)(a + c) = a2 − c2 as well, proving that b1b2 = a2 − c2.

(b) The Law of Cosines is c2 = a2 + b2 − 2ab cos C, which can be rewritten as b2 −
(2a cos C)b + (a2 − c2) = 0. Consider the expression f (b) = b2 − (2a cos C)b +
(a2 − c2) as a polynomial in b. Both b1 and b2 make the equation f (b) = 0 valid
(because they result in valid triangles); in other words, they are both roots of the
polynomial f (b). But the product of the roots of the polynomial x2 + Mx + N
is simply N; in this case, the product b1b2 of the roots must be a2 − c2. (Note:
this fact about the product of the roots of a quadratic polynomial should be well-
known from algebra, and it can also be recovered by expanding out (x− r1)(x− r2)
where r1 and r2 are the roots.)

(c) The sum of the roots of a polynomial x2 + Mx + N is −M. Therefore, by the same
argument as in part (b), we can immediately deduce that b1 + b2 = 2a cos C. (The
same conclusion can be formed by drawing the line through B perpendicular to
the ray out of C, which bisects the segment between the two points called A? in
the diagram.)
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