
Math 308, Section 101
Solutions for Homework #4

(due October 20, 2004)

I. (Baragar, p. 73, #3.5) Prove Lemma 3.3.5 (given 4ABC and two points A′ and D, it is possible
to construct a triangle 4A′B′C′ that is congruent to 4ABC such that B′ is on the line A′D) and
its corollary (we can reproduce a constructed angle on any constructed line).

It is possible to prove the corollary first and then prove the lemma from it, but we will
do it in the order described. Start by constructing CA′(|AB|), the circle centered at A′ of
length |AB|, which is possible by Lemma 3.3.3. This circle intersects the line A′D in two
points; call one of them B′. Now construct CA′(|AC|) and CB′(|BC|), again by Lemma
3.3.3. These circles intersect in two points; call one of them C′. By construction, we have
|A′B′| = |AB|, |A′C′| = |AC|, and |B′C′| = |BC|, and therefore 4A′B′C′ ≡ 4ABC by
the SSS theorem. This establishes Lemma 3.3.5. As for its corollary, let ∠BAC be already
constructed, and suppose we want to make a congruent angle on the line A′D. Simply
make a congruent copy 4A′B′C′ of 4ABC such that B′ is on the line A′D as per Lemma
3.3.5; then ∠B′A′C′ = ∠BAC as desired.

II. Given a constructed line AB and a constructed point C, describe how to construct a line through
C that is perpendicular to AB. (Note: do not make any assumption about whether or not C is on
the line AB.)

Without loss of generality, we can assume that C 6= A (if C = A, then C 6= B and we can
just switch the names of A and B). Construct CC(|CA|), the circle centered at C that goes
through A. Now a circle intersects a line in 0, 1, or 2 points; the circle just constructed
has at least one point A of intersection with the line AB. If it has only this one point of
intersection, then the line AB is tangent to the circle by the definition of tangency. By a
previous homework problem, this implies that the radius CA is perpendicular to the line
AB, and we’re already done with the desired construction.

So let’s assume that the line AB and the circle CC(|CA|) intersect in a second point A′

as well. Construct the midpoint M of the segment AA′. (If C is on the line AB, then
C = M and the perpendicular bisector of AA′ is the desired line. Hence we can assume
from now on that C is not on the line AB.) Note that |CA| = |CA′| since both A and A′

lie on the same circle centered at C, and |AM| = |A′M| since M is the midpoint of AA′.
The side CM is shared, and so we conclude that 4CAM ≡ 4CA′M by SSS. In particular,
∠CMA = ∠CMA′, and so CM is perpendicular to the original line AA′ as desired.

III. (Baragar, p. 79, #3.17) Construct a segment of length
√

5, and from this, construct a segment
of length

√
5 − 1. Use it to construct a regular pentagon inscribed in a circle of radius four.

Begin by constructing any two perpendicular lines intersecting at A. On one line, con-
struct a point B such that |AB| = 1 (that is, A and B are the same distance apart as the
base points O and P), and on the other line, construct a point C such that |AC| = 2.
(To do the latter, let CA(|OP|) cut this second line at C′, and then let CC′(|OP|) cut the
line at C, so that |AC| = |AC′| + |C′C| = |OP| + |OP| = 1 + 1 = 2.) Then by the
Pythagorean Theorem, |BC| =

√
|AB|2 + |AC|2 =

√
5. We can immediately construct

the circle through A centered at B, which cuts the segment BC at the point D, say; then
|CD| = |BC| − |BD| =

√
5 − 1.
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Now construct a segment of length 4. (Again, we can start with the segment AC of
length 2, and construct CA(|AC|) which cuts the line AC again at E; then |CE| = |CA|+
|AE| = 2 + 2 = 4.) Use this to construct a circle CE(|CE|) of radius four. Also construct
the point H between E and C such that |EH| = |CD| =

√
5 − 1. Finally, as in the end of

the book’s construction of the regular pentagon, construct the line perpendicular to EC
at H, which intersects CE(|CE|) in the points F and F′, and construct the circles CF(|BD|)
and CF′(|BD|) which intersect CE(|CE|) again in the points G and G′. Then CFGG′F′ is a
regular pentagon.

IV. Suppose that the orbits of Venus and Earth are perfectly circular with the sun at the center.
Venus is usually very close to the sun (hence its being known as both the “evening star” and the
“morning star”). Suppose that through years of observation, you decide that the farthest away
from the sun that Venus ever looks is 45◦ apart in the sky. Calculate, with justification, the
distance of Venus from the sun.

Let S, E, and V represent the positions of the sun, Earth, and Venus, respectively. As
the two planets revolve around the sun, their orbits form circles centered at S. The angle
between the sun and Venus referred to in the problem is simply ∠SEV (think of the ob-
server on Earth as the vertex, arms pointing up at the sun and Venus to form the sides of
the angle). We are given that the most this angle ever measures is 45◦. This occurs when
the line EV is tangent to the orbit of Venus. (Because the problem is stated not in com-
plete formality, this observation can be advanced without formal justification. Ultimately
a formal proof would rely on very technical facts about betweenness of points.) By a pre-
vious homework problem, the line EV is tangent to the orbit, which is simply CS(|SV|),
precisely when EV is perpendicular to the radius SV.

We now have a triangle 4ESV where ∠E = 45◦ and ∠V = 90◦. By definition, sin E =
|SV|/|ES|, or |SV| = |ES| sin 45◦ = |ES|

√
2/2. Using any reasonable source for the

distance from the Earth to the sun allows us to finish the computation. For example, the
table on page 64 of the textbook gives |ES| = RS = 149 million kilometres. From this we
compute that |SV| = 149

√
2/2 ≈ 105 million kilometres. (In reality, this is a bit smaller

than the actual minimum distance from Venus to the sun, which is about 107.48 million
kilometres. The maximum distance between Venus and the sun is about 108.94 million
kilometres.)

V. Suppose you have already constructed a circle C centered at O and going through a point P,
and two line segments AB and DE. Describe, with justification, a construction of a circle C ′ such
that

|C|
|C ′| =

|AB|
|DE| ,

where |C| and |C ′| denote the areas enclosed by the circles C and C ′, respectively.

If we can construct a segment YZ of length |OP|
√
|DE|/|AB|, then the circle C ′ centered

at Y going through Z will have area

|C ′| = π |YZ|2 = π

(
|OP|

√
|DE|
|AB|

)2

= π |OP|2 |DE|
|AB| = |C| |DE|

|AB| ,
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which will give |C|/|C ′| = |AB|/|DE| as desired. So: using Lemma 3.4.3, we can start
with a segment of length |AB| and construct a segment of length 1/|AB|. Then using
Lemma 3.4.2, we can construct a segment of length |DE| · (1/|AB|) = |DE|/|AB|, and by
Lemma 3.4.5 we can construct a segment of length

√
|DE|/|AB|. Finally, by Lemma 3.4.2

again we can construct a segment of length |OP|
√
|DE|/|AB|, which yields the circle we

want.

VI. Suppose you have already constructed a square ABCD and a segment EF with |EF| > |AB|.
Describe, with justification, a construction of a rhombus WXYZ with side length |WX| = |EF|
whose area is the same as the area of ABCD.

It seems to be most straightforward to try to determine the lengths of the diagonals
of the desired rhombus. First we claim that the diagonals of any rhombus WXYZ are
perpendicular to each other and bisect each other. To see this, consider first the trian-
gles 4WXY and 4WZY. We have |WX| = |WZ| and |XY| = |ZY| because WXYZ
is a rhombus, and the side WY is shared; therefore 4WXY ≡ 4WZY by SSS. There-
fore ∠XWY = ∠ZWY. Now let the diagonals WY and XZ intersect at the point V.
We have |WX| = |WZ| again, and ∠XWV = ∠ZWV (just renaming the angles from
before), and trivially |WV| = |WV|. Therefore 4XWV ≡ 4ZWV by SAS. We con-
clude that ∠WXV = ∠WXZ, which shows that WY and XZ are perpendicular, and that
|XV| = |ZV|, which shows that WY bisects XZ. A similar argument shows that XZ
bisects WY as well.

Now the rhombus is made up of four right triangles, each of which has legs of length
|WV| = 1

2 |WY| and |XV| = 1
2 |XZ| and hypotenuse |WX|. Therefore, if we want the

rhombus to have side length equal to |EF|, we are hoping to have

|EF|2 =
( 1

2

)2|WY|2 +
( 1

2

)2|XZ|2, or |WY|2 + |XZ|2 = 4|EF|2.

Moreover, the area of each of the four right triangles is 1
2( 1

2 |WY|)( 1
2 |XZ|) = 1

8 |WY||XZ|,
and so the total area of the rhombus is 4 · 1

8 |WY||XZ| = 1
2 |WY||XZ|. Since we want this

to equal the area of the square ABCD, we are also hoping that

|AB|2 = 1
2 |WY||XZ|, or |WY||XZ| = 2|AB|2.

We are given the values of |AB| and |EF|, and we would like to solve this pair of equations
for |WY| and |XZ|.

There are several ways to do this algebraically, and you can use your favorite one. My
preferred method is to note that(

|WY|+ |XZ|
)2 = |WY|2 + |XZ|2 + 2|WY||XZ| = 4|EF|2 + 4|AB|2,(

|WY| − |XZ|
)2 = |WY|2 + |XZ|2 − 2|WY||XZ| = 4|EF|2 − 4|AB|2.

Therefore |WY|+ |XZ| = 2
√
|EF|2 + |AB|2 and |WY| − |XZ| = 2

√
|EF|2 − |AB|2 (note

that the quantity |EF|2 − |AB|2 is positive by the assumption that |EF| > |AB|), and this
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pair of equations is easy to solve for |WY| and |XZ| by adding and subtracting. We get

|WY| =
√
|EF|2 + |AB|2 +

√
|EF|2 − |AB|2

|XZ| =
√
|EF|2 + |AB|2 −

√
|EF|2 − |AB|2.

Now we can proceed with the actual construction! Using Lemma 3.4.2, construct seg-
ments of length |EF| · |EF| = |EF|2 and |AB| · |AB| = |AB|2. Next using Lemma 3.4.1,
construct segments of length |EF|2 + |AB|2 and |EF|2 − |AB|2. Now using Lemma 3.4.5,
construct segments of length

√
|EF|2 + |AB|2 and

√
|EF|2 − |AB|2. Finally, bisect each of

these segments to construct segments of length 1
2

√
|EF|2 + |AB|2 and 1

2

√
|EF|2 − |AB|2.

Construct two perpendicular lines intersecting at any constructible point V, and con-
struct the circle of radius 1

2

√
|EF|2 + |AB|2 centered at V; let it intersect one of the per-

pendicular lines at T and T′ and the other line at U and U′. Now construct circles
of radius 1

2

√
|EF|2 − |AB|2 centered at T, T′, U, and U′. For the first line, let W and

Y be the points of intersection such that T is between W and V and T′ is between Y
and V; for the second line, let X and Z be the points of intersection such that X is be-
tween U and V and Z is between U′ and V. With this construction, we have |WY| =√
|EF|2 + |AB|2 +

√
|EF|2 − |AB|2 and |XZ| =

√
|EF|2 + |AB|2 −

√
|EF|2 − |AB|2 as de-

sired, which makes |WX| = |XY| = |YZ| = |ZW| = |EF| and |WXYZ| = |AB|2 as can be
verified algebraically (by the reverse of the above derivation).

[There are other ways to approach this problem. For example, the area of a rhombus
WXYZ can be shown to equal |WX|2 sin W. Therefore, we could construct an angle ∠A
such that sin A = |AB|2/|EF|2, and then use this angle to build our rhombus with sides
of length |EF|.]
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