
Math 308, Section 101
Solutions for Homework #5

(due October 27, 2004)

I. Using Theorem 3.6.5, prove that there is no construction that “pentasects” an arbitrary angle.
That is, show that there is a constructible angle measuring x◦ such that it is impossible to construct
an angle measuring (x/5)◦.

We know that we can construct a regular pentagon; in particular, we can construct its
central angle of 360◦/5 = 72◦. However, Theorem 3.6.5 tells us that we cannot construct
a regular 25-sided polygon (since 25 = 52 is a proper prime power). In particular, we
cannot construct an angle of measure 360◦/25 = 14.4◦. (If we could, we could copy it at
the center of some circle 25 times and thus construct the regular 25-gon.) But pentasecting
a 72◦ angle would result in a construction of a 14.4◦ angle, which we see is impossible.
Therefore there is no general construction for pentasecting an arbitrary angle.

[The same type of argument, using Theorem 3.6.5, can prove the following statement: if
m has an odd prime factor, then there is no general construction for dividing an arbitrary
angle equally into m congruent angles. In other words, we can bisect angles (and re-bisect
to 4-sect, re-re-bisect to 8-sect, and so on) with straightedge and compass, but we can only
2r-sect—we can’t m-sect for any other values of m.]

II. Let CA(|AB|) be a circle centered at the constructed point A and going through the constructed
point B, and let D be any constructed point outside the circle C. Describe, with proof, a construc-
tion of a line going through D that is tangent to the circle C.

Construct two perpendicular lines intersecting at a point E. Construct the circle CE(|AB|),
letting F be one of the points of intersection of this circle with the first line, so that
|EF| = |AB|. Now construct CF(|AD|), letting G be one of the points of intersection
of this circle with the second line, so that |FG| = |AD|. (Note that |AD| > |AB| since
D is outside the original circle CA(|AB|), so that this second circle really does intersect
the second line.) Since 4EFG is a right triangle with hypotenuse |FG|, we see by the
Pythagorean Theorem that

|EG| =
√
|FG|2 − |EF|2 =

√
|AD|2 − |AB|2.

Now construct CD(|EG|), which intersects the original circle CA(|AB|) at two points H
and H′, so that |DH| = |DH′| = |EG| and |AH| = |AH′| = |AB|. We claim that the line
DH is tangent to the original circle CA(|AB|) (as is DH′). To see this, note that

|DH|2 + |HA|2 = |EG|2 + |AB|2 =
(√

|AD|2 − |AB|2
)2

+ |AB|2

=
(
|AD|2 − |AB|2

)
+ |AB|2 = |AD|2.

By the converse of the Pythagorean Theorem, we conclude that 4DHA is a right triangle
with right angle ∠DHA. In other words, the line DH is perpendicular to the radius HA
of the original circle CA(|AB|). This implies that DH is tangent to the circle, as desired.

[Some students calculated the same length using the Power of the Point Theorem. Oth-
ers noted that the circle with diameter AD will intersect the original circle CA(|AB|) at the
point H (can you prove it?), which gives a very quick construction!]
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III. Given three distinct, already constructed points A, B, and C, demonstrate that the Euler line
of the triangle 4ABC can be constructed.

Construct the perpendicular bisectors of two of the triangle’s sides, say AB and AC;
these perpendicular bisectors intersect at the circumcenter O of 4ABC, which is thus a
constructible point. Similarly, construct the angle bisectors of two of the triangle’s angles,
say ∠A and ∠B; these angle bisectors intersect at the centroid G of 4ABC, which is thus
a constructible point as well. Therefore the line GO, which is precisely the Euler line of
4ABC, is constructible as well. [Using the intersection of two altitudes to construct the
orthocenter H of 4ABC in place of one of the other two centers is just as straightforward.]

IV. Prove the formula

4 arctan
(1

5

)
− arctan

( 1
239

)
= 45◦.

Using this formula, describe a construction of a segment of length 1/239 units that does not use
Lemmas 3.4.2 or 3.4.3 (in other words, one that does not rely on multiplication or inversion of
already constructed lengths).

Define x◦ and y◦ to be the angles such that tan x◦ = 1/5 and tan y◦ = 1/239. Then the
formula we are supposed to prove is simply 4x◦ − y◦ = 45◦, or 4x◦ = y◦ + 45◦. To prove
this, it suffices to prove that tan(4x◦) = tan(y◦ + 45◦). Now

tan(α + β) =
tanα + tan β

1 − (tanα)(tan β)
,

from which it follows (by setting β = α) that

tan(2α) =
2 tanα

1 − (tanα)2 .

From this we obtain

tan(2x◦) =
2 tan x◦

1 − (tan x◦)2 =
2 · 1

5

1 − ( 1
5)2

=
2/5

24/25
=

5
12

,

and therefore

tan(4x◦) = tan(2(2x◦)) =
2 tan(2x◦)

1 − (tan(2x◦))2 =
2 · 5

12

1 − ( 5
12)2

=
5/6

119/144
=

120
119

.

On the other hand,

tan(y◦ + 45◦) =
tan y◦ + tan 45◦

1 − (tan y◦)(tan 45◦)
=

1
239 + 1

1 − 1
239 · 1

=
240/239
238/239

=
120
119

,

and so tan(4x◦) = tan(y◦ + 45◦) as claimed.
We now use this to construct a segment of length 1/239. Starting with our base segment

OP with |OP| = 1, construct the line ` that is perpendicular to OP at O. By copying the
segment of length 1 five times, construct a point Q on ` such that |OQ| = 5. Then by the
definition of tan, we have tan ∠OQP = 1/5, and so ∠OQP = x◦ by the definition of x.

Copy the angle ∠OQP three more times around the point Q to make four adjacent
copies ∠OQP, ∠PQR, ∠RQS, and ∠SQT. Then ∠OQT = 4∠OQP = 4x◦. Now con-
struct a 45◦ angle (by bisecting one of the existing right angles, say) and copy it onto
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the same side of the ray QO, forming an angle ∠OQU that is contained inside ∠OQT.
Then ∠UQT = ∠OQT − ∠OQU = 4x◦ − 45◦ = y◦ by the formula proved above.
Now that we have the angle y◦ constructed, we simply transfer this angle back to the
ray PO, forming an angle ∠OPV, where V is the intersection of the angle’s other ray
with the perpendicular `. Then 4OPV is a right triangle with right angle ∠O, and so
|OV| = |OP| tan ∠OPV = 1 · tan y◦ = 1/239 as desired.

[Note: If we express angle measure in radians rather than degrees, there is a lovely
formula (a power series) for arctan x:

arctan x = x − x3

3
+

x5

5
− x7

7
+ · · · .

Since 45◦ equals π/4 radians, the formula to be proved in this problem becomes

π = 16 arctan
(1

5

)
− 4 arctan

( 1
239

)
= 16

(1
5
− 1

53 · 3
+

1
55 · 5

− 1
57 · 7

+ · · ·
)
− 4

( 1
239

− 1
2393 · 3

+
1

2395 · 5
− 1

2397 · 7
+ · · ·

)
.

This is actually an excellent formula to use if you want to calculate a lot of digits of π .
For example, if you stop at the term 1/(5145 · 145) in the first infinite sum and the term
−1/(23943 · 43) in the second infinite sum, the resulting expression matches π to the first
100 decimal places.]

V. Let d = 2 cos 40◦. Based on the fact that 3 · 40◦ = 120◦ and that cos 120◦ is a known quantity,
find (with proof) an polynomial f (x) with integer coefficients, irreducible over the integers, such
that f (d) = 0. Conclude, without using Theorem 3.6.5, that it is impossible to construct a regular
nonagon (nine-sided polygon).

Recall the triple-angle formula cos(3θ) = 4 cos3 θ − 3 cosθ derived in class. From this
we see that

8(cos 40◦)3 − 6 cos 40◦ = 2 cos(3 · 40◦) = 2 cos 120◦ = 2
(
− 1

2

)
= −1.

If we set d = 2 cos 40◦, this equation becomes d3 − 3d = −1. In other words, d is a root
of the polynomial f (x) = x3 − 3x + 1. Suppose, for the sake of contradiction, that f (x)
is not irreducible over the integers. Then f (x) factors as f (x) = g(x)h(x) where both
g(x) and h(x) are nonconstant polynomials with integer coefficients. Since deg f = 3,
one of the two polynomials g(x) and h(x) must have degree 1 and the other degree 2. In
particular, f (x) has a rational root. However, the only possible rational roots of f (x) are
±1, since the leading coefficient and the constant term of f (x) both equal 1. We quickly
check that f (1) = −1 and f (−1) = 3, and so f (x) does not have a rational root, which
is a contradiction. Therefore f (x) is actually irreducible over the integers. Since d is a
root of f (x), which has degree 3, we see from Theorem 3.6.4 that d is not a constructible
length. Therefore we cannot construct a regular nonagon (if we could, then we could
quickly construct a segment of length 2 cos 40◦ = d).

[It is not too hard to figure out that the other two roots of the polynomial f (x) are
2 cos 160◦ = −2 cos 20◦ and 2 cos 280◦ = 2 cos 80◦.]
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