
Math 308, Section 101

Solutions for Homework #6

(due November 5, 2004)

I. List all of the numbers n between 2,000 and 3,000 for which the regular n-gon can be
constructed. Describe briefly why your list is correct.

Between Theorems 3.6.1, 3.6.3, and 3.6.5, we know that a number n = 2jm (with m odd)
has the property that a regular n-gon can be constructed with straightedge and compass if
and only if m is 1, a Fermat prime p = 22k

+ 1, or a product of distinct Fermat primes.
The only Fermat primes below 2,000 are 3, 5, 17, and 257. Therefore there are 16 possible
choices for m, and for each one we simply keep multiplying by 2 to see if it has a multiple
2jm between 2,000 and 3,000. (Note that there can be at most one such multiple for any m,
since 3,000/2,000 = 1.5 < 2.)

• m = 1: We find the solution n = 211 · 1 = 2,048.
• m = 3: Since 29 · 3 = 1,536 and 210 · 3 = 3,072, this does not yield a solution in the

desired range.
• m = 5: We find the solution n = 29 · 5 = 2,560.
• m = 17: We find n = 27 · 17 = 2,176.
• m = 257: We find n = 23 · 257 = 2,056.
• m = 3 · 5 = 15: Since 27 · 15 = 1,920 and 28 · 15 = 3,840, this yields no solution.
• m = 3 · 17 = 51: Since 25 · 51 = 1,632 and 26 · 51 = 3,264, this yields no solution.
• m = 3 · 257 = 771: Since 2 · 771 = 1,542 and 22 · 771 = 3,084, there’s no solution.
• m = 5 · 17 = 85: We find n = 25 · 85 = 2,720.
• m = 5 · 257 = 1,285: We find n = 2 · 1,285 = 2,570.
• m = 3 · 5 · 17 = 255: We find n = 23 · 257 = 2,040.
• The other choices 17 · 257, 3 · 5 · 257, 3 · 17 · 257, 5 · 17 · 257, or 3 · 5 · 17 · 257 for m

are already larger than 3,000, so we have no further solutions.

In summary, the answers are n = 2,040, 2,048, 2,056, 2,176, 2,560, 2,570, and 2,720.

II. Prove Theorem 3.6.3. You may use the following number theory (Math 312) fact without
having to prove it: if m and n are relatively prime, then there exist positive integers x and
y such that mx − ny = 1.

We are assuming that m and n are relatively prime, and that we can construct the regular
m-gon and the regular n-gon; we need to prove that we can construct the regular mn-
gon. Start by choosing positive integers x and y such that mx − ny = 1. If the vertices
of an already constructed regular n-gon, inscribed in a circle with center O, are labeled
P0, P1, P2, . . . , Pn−1, then consider the angle ∠P0OPx, which is certainly constructible. The
measure of this angle is simply x times the measure of one central angle of the regular n-gon,
or in other words x · (360◦/n). In the same way, we can show that an angle of measure
y · (360◦/m) can be constructed using the already constructed regular m-gon.

Now copy both angles onto the same line—say ∠BAD = x · (360◦/n) and ∠BAC =
y · (360◦/m). What is the measure of the angle ∠DAC thus constructed? It is

∠DAC = ∠BAD − ∠BAC = x ·
360◦

n
− y ·

360◦

m
=

360(xm − yn)◦

mn
=

360 · 1◦

mn
=

360◦

mn
.



In other words, the angle (360/mn)◦ can be constructed. From this, as we know, we can
construct the entire regular mn-gon, as claimed.

III. Let ∠PQA be a right angle, and let ε be any positive number. Show that there exists a
point R on the ray QA such that ∠PRQ < ε◦.

(Refer to Figure 6.10 on page 125 of Baragar’s book.) Begin by choosing a point R1

on the ray QA such that |QR1| = |QP |. By pons asinorum, we know that ∠QR1P =
∠QPR1. We also know that the sum of the three angles in 4PQR1 is less than 180◦, and
so ∠PQR1 + ∠QR1P + ∠QPR1 = 90◦ + 2∠QR1P < 180◦. We conclude that ∠QR1P <
(90/2)◦. Next, choose a point R2 on the line QA such that R1 is between R2 and Q and
|R1R2| = |R1P |. Notice that 180◦ − ∠PR1R2 = ∠PR1Q < (90/2)◦. Again, by pons
asinorum we have ∠PR2R1 = ∠R1PR2, and so the sum of the angles of 4PR1R2 gives us
the inequality ∠PR1R2+∠PR2R1+∠R1PR2 = ∠PR1R2+2∠PR2R1 < 180◦, or 2∠PR2R1 <
180◦ − ∠PR1R2 < (90/2)◦. We conclude that ∠PR2R1 < (90/22)◦.

Continue recursively in this way: once the point Rn has been chosen, and it has been shown
inductively that ∠PRnRn−1 < (90/2n)◦, choose a point Rn+1 on the line QA such that Rn

is between Rn+1 and Q and |RnRn+1| = |RnP |. Notice that 180◦−∠PRnRn+1 = ∠PRnQ <
(90/2n)◦. Again, by pons asinorum we have ∠PRn+1Rn = ∠RnPRn+1, and so the sum of
the angles of 4PRnRn+1 gives us the inequality ∠PRnRn+1 + ∠PRn+1Rn + ∠RnPRn+1 =
∠PRnRn+1 + 2∠PRn+1Rn < 180◦, or 2∠PRn+1Rn < 180◦ − ∠PRnRn+1 < (90/2n)◦. We
conclude that ∠PRn+1Rn < (90/2n+1)◦. (This can be written as a formal induction, but I
hope the argument is clear.)

All it remains to note is that when n is large enough, 90/2n is smaller than any predeter-
mined positive number ε. (In fact, this will be the case as soon as n > log2(90/ε).) Since
the angle ∠PRnRn−1 is simply the angle ∠PRnQ, we see that once n is large enough, the
angle ∠PRnQ will have measure smaller than ε◦, as desired.

IV. (Baragar, p. 125, #6.8) Prove that if alternate interior angles of a transversal ` to two
lines `1 and `2 are equal, then `1 and `2 are ultraparallel.

Let the points of intersection of ` with `1 and `2 be A and B, respectively. Suppose
that the lines `1 and `2 intersected at a point C. Then the two angles ∠CAB and ∠CBA
would add to 180◦ (one of them is one of the alternate interior angles, and the other is the
supplementary angle of the other interior angle), and that would make the sum of the angles
in the triangle 4ABC greater than 180◦, which is impossible. Therefore `1 and `2 cannot
intersect. It remains to show that they cannot be parallel either.

By the Fact proven in class, any two lines that have a transversal resulting in equal
alternate interior angles also have a common perpendicular. So let D and E be points on `1

and `2, respectively, such that DE is perpendicular to both lines. Now suppose that `1 and
`2 were parallel. Then since DE is perpendicular to `2, the angle of parallelism at D with
respect to the line `2 would be (by definition) the angle between DE and the parallel line
`1, which is 90◦. But this is impossible, since angles of parallelism are always strictly less
than 90◦. Therefore `1 and `2 can neither intersect nor be parallel. We conclude that they
must be ultraparallel.
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V. Suppose you have a Euclidean circle centered at O with two perpendicular diameters MN
and AB. Let P be a point on the segment AB other than O, and let α◦ be the measure
of the (Euclidean) angle ∠PMN . Now think of the circle as forming the boundary of the
hyperbolic plane, so that the diameter MN is a hyperbolic-line ` and O and P are points in
the hyperbolic plane. Prove that the angle of parallelism Π(|PO|) has the value (90 − 2α)◦.

We first prove a simple lemma: if Q is a point outside a circle centered at C, and N
and P are the two points on the circle such that QN and QP are tangent to the circle,
then |QN | = |QP |. To see this, note that ∠CNQ = 90◦ since QN is the tangent line,

and so by the Pythagorean Theorem, |QN | =
√

|CQ|2 − |CN |2. By the same argument,

|QP | =
√

|CQ|2 − |CP |2. But |CN | = |CP | since both segments are radii, and so the
expressions for |QN | and |QP | are equal.

Now consider the hyperbolic plane with two perpendicular Euclidean-diameters MN and
AB drawn, intersecting at O. Let P be a point above O. How do we draw the angle
of parallelism at P with respect to the horizontal line? We have to draw the two lines
through P that are parallel to the horizontal line; this means that they should be arcs of
Euclidean-circles that are tangent to MN at the points M and N , as in Figure 1. If we
draw the Euclidean-tangent-lines to these Euclidean-circles at P (say one of them intersects
the horizontal line at Q, then the angle of parallelism we are looking for is precisely the
Euclidean-angle ∠OPQ, which is the angle between the hyperbolic-lines OA and PM .

Now let’s focus on a piece of this diagram, as shown in Figure 2, and consider it as
a Euclidean picture. We are given that ∠MPO = α◦, and we are trying to determine
β◦ = ∠OPQ. Since MO and OP are perpendicular, we have ∠MOP = 90◦ and hence
∠MPO = 180◦−∠MOP −∠MPO = (90−α)◦. On the other hand, the segments QM and
QP are tangent to the same circle; by the lemma we started with, we see that |QM | = |QP |.
Therefore by pons asinorum, ∠QPM = ∠QMP = α◦. We conclude that β◦ = ∠OPQ =
∠OPM − ∠QPM = (90 − α)◦ − α◦ = (90 − 2α)◦, as claimed.
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VI. Using the disk model of the hyperbolic plane, draw a triangle 4ABC with three 45◦

angles, where A is the Euclidean-center of the Euclidean-circle that forms the boundary of
the hyperbolic plane. If O is the Euclidean-center of the Euclidean-circle that defines the line
BC, prove that ABOC is a Euclidean-rhombus. Now consider the isometry f that is the
reflection of the hyperbolic plane in the line BC. Draw the images of the lines AB and AC
under f and their intersection A′. What are the measures of the angles ∠ABA′ and ∠ACA′?
Conclude that the Euclidean-center of the Euclidean-circle defining the line A′B lies on the
Euclidean-line AB.

A

B

C
A

B

C

O
P A

B

C

A’

Q

Figure 1 Figure 2 Figure 3

We know that the lines AB and AC must be Euclidean-diameters that intersect at a 45◦

angle at A. We also know that the line BC must be an arc of a Euclidean-circle, and that the
Euclidean-tangent-line to the circle at B must meet the line AB in a 45◦ angle, and similarly
at C. Therefore the 45◦-45◦-45◦ triangle 4ABC will appear as in Figure 1. To investigate the
Euclidean quadrilateral ABOC, we begin by noting that |OB| = |OC| since both segments
are radii of the same Euclidean-circle. Now label by P the point of intersection of the
two Euclidean-tangent-lines at B and C, as in Figure 2. We have already mentioned that
∠BAC = ∠ABP = ∠ACP = 45◦. On the other hand, ∠OBP = 90◦ = ∠OCP since the
radii are always perpendicular to the tangent lines. Therefore ∠ABO = ∠ABP + ∠OBP =
45◦ + 90◦ = 135◦, and similarly ∠ACO = 135◦. Since ∠CAB + ∠ABO = 45◦ + 135◦ =
180◦, we conclude that the Euclidean-lines AC and BO are parallel; similarly, the fact that
∠BAC+∠ACO = 180◦ shows that the Euclidean-lines AB and CO are parallel. This means
that ABOC is a parallelogram, and hence the opposite sides are equal, that is, |AC| = |BO|
and |AB| = |CO|. Since we already know that |OB| = |OC|, we have shown that all four
sides are equal, and so ABOC is a rhombus.

Returning to the hyperbolic plane: suppose we look at the reflection f in the line BC,
which clearly satisfies f(B) = B and f(C) = C. Reflections (all isometries) preserve angles,
and so f(A) = A′, it must be the case that ∠ABC = ∠A′BC. Thus ∠A′BC must be 45◦,
and so ∠ABA′ = ∠ABC + ∠A′BC = 45◦ + 45◦ = 90◦. Therefore, the reflection of the
line AB will be a new line A′B, which is an arc of a Euclidean-circle passing through B in
such a way that the Euclidean-tangent-line at B is perpendicular to the line AB. The result
looks like Figure 3 (similar remarks hold for what happens at C, so that ∠ACA′ = 90◦ in
particular). Now the Euclidean-line AB intersects the Euclidean-circle through B and A′ in
Figure 3 perpendicular to the Euclidean-tangent-line at B, and so we know that AB actually
passes through the Euclidean-center Q of the Euclidean-circle in question.
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