
Math 308, Section 101

Solutions for Homework #8

(due December 3, 2004)

I. (Baragar, p. 110, #5.11) How many square faces are on the snub cube?

By definition, the snub cube is represented by the sequence (3, 3, 3, 3, 4); that is, there
are four (equilateral) triangles and one square at every vertex. Let F3 represent the number
of triangular faces on the snub cube and F4 the number of square faces. We use the Euler
characteristic equation F − E + V = 2 to determine all of the values.

Since every square has four vertices, and since every vertex is attached to exactly one
square, we immediately get the equation V = 4F4. Every triangle has three vertices, but
now every vertex has four triangle vertices attached to it; therefore 4V = 3F3 as well, which
gives the relationship 16F4 = 3F3. Also, each triangle has three edges and each square four,
but we count each edge twice in this way; therefore 2E = 3F3 + 4F4. Since 3F3 = 16F4,
we can write this last equation as 2E = 16F4 + 4F4, or E = 10F4. Now we can express
everything in terms of F4, once we note that F = F3 + F4 and F3 = 16

3
F4:

V − E + F = 2

4F4 − 10F4 + (F3 + F4) = 2

4F4 − 10F4 +
16F4

3
+ F4 = 2

F4

3
= 2

F4 = 6.

Therefore the snub cube has six square faces. (We also quickly see that it has 32 triangular
faces, 24 vertices, and 60 edges.)

II. Calculate the dihedral angle of a regular tetrahedron (that is, the angle between two of its
faces).

For arithmetical simplicity later, we let the edge length of our regular tetrahedron equal
2. To find the dihedral angle, we look at the tetrahedron from an angle at which one of the
edges is aligned straight away from us, so that it looks like a single point. The resulting
image is a triangle, where the side opposite that point is an edge of the tetrahedron (and
thus has length 2), and the two sides adjacent to that point are altitudes of faces of the
tetrahedron. Since each face is an equilateral triangle of side-length 2, the altitudes have
length

√
3. Moreover, the vertex angle φ of this triangle is precisely the dihedral angle we

want to measure.
Therefore, φ is the vertex angle of an isosceles triangle with base 2 and sides

√
3. Solving

the Law of Cosines for cos φ, we get

cos φ =
a2 + b2 − c2

2ab
=

√
3

2
+
√

3
2 − 22

2
√

3
√

3
=

3 + 3 − 4

6
=

1

3
.

In other words, φ = arccos 1
3
. As it happens, this angle is about 70.5◦.

(Recall that the dihedral angle of the regular octahedron is arccos(− 1
3
), which is exactly

the supplemental angle to φ. This means that if you have regular tetrahedra and a regular
octahedron of the same edge length, then the tetrahedra will slide neatly under the corners



of the octahedron on the tabletop. In fact, if you start with a big regular tetrahedron and
cut off its four corner tetrahedra, the result will be a regular octahedron.)

III. (Baragar, p. 149, #7.34) In the upper hand plane model H, carefully draw the asymptotic

triangle with vertices i, 1 + i, and 1. Is the map γ =
[

1 −1

1 0

]

an isometry of H? In the

same diagram, carefully draw the image of the asymptotic triangle under the action of γ.

The problem is referring to the map Tγ , of course, and in this case Tγ(z) = (z − 1)/z =
1 − 1/z. It is an isometry since γ is in SL2(R) (note that det γ = 1 · 0 − (−1) · 1 = 1). We
quickly compute that

Tγ(i) = 1 − 1

i
= 1 − (−i) = 1 + i

Tγ(1 + i) = 1 − 1

1 + i
= 1 − 1 − i

(1 + i)(1 − i)
= 1 − 1 − i

2
= 1

2
+ 1

2
i

Tγ(1) = 1 − 1

1
= 0.

All of the circular arcs making up the hyperbolic segments are easily determined (their
centers are 0, 1

2
, 1, and 11

2
), and the result is the following diagram.

i

0 1

1 + i

1
2 +

i
2

IV. Let A = i, B = 1 + i, and C = −1 + i. Suppose that f is a direct isometry of the
Poincaré half-plane model of hyperbolic geometry such that f(A) = A and f(B) is on the
vertical line going through A. If f(B) is above A, is the real part of f(C) positive, negative,
or zero? What if f(B) is below A?

We don’t have to figure out the exact measure of ∠BAC to answer this question (although
as it happens, ∠BAC is a bit less than 127◦). We only need to observe that ∠BAC, when
traveling counterclockwise from the ray AB to the ray AC, is less than 180◦ (notice that the
tangent lines to the arcs at A both rise above the horizontal line through A). Let B ′ = f(B)
and C ′ = f(C); we are given that f(A) = A. Since f is a direct isometry, that means
that ∠B′AC ′, when traveling counterclockwise from the ray AB ′ to the ray AC ′, is less than
180◦. (If f had been an orientation-reversing isometry, the image angle would be oriented
clockwise.) Therefore, if f(B) = B ′ is below A, then the tangent line to the circular arc AC ′

at A must have a positive slope; this means that the circular arc representing the ray AC ′

goes to the right of the point A, which is to say that f(C) = C ′ has positive real part. If on
the other hand, f(B) = B ′ is above A, then f(C) = C ′ will have negative real part.
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V. Write the fractional linear transformation f(z) = −1/(4z + 10) as a composition using
the functions g(z) = −1/z and hα(z) = z + α. You may use g and h multiple times in the
composition, and you may use various values for α.

Our first thought might be to write down γ =
[

0 −1

4 10

]

, but this matrix is not in SL2(R),

as its determinant is 4. However, we can fix this by dividing through by the square root of

the determinant. Therefore we define γ =
[

0 −1/2
2 5

]

, which is in SL2(R).

Now we look to the proof of Theorem 7.6.4, noticing that the “a” in our matrix is 0, so
we have to read the proof’s last paragraph. If we set, as usual,

σ =

[

0 −1
1 0

]

and τα =

[

1 α
0 1

]

,

then we are led to notice that

σγ =

[

0 −1
1 0

][

0 −1/2
2 5

]

=

[

−2 −5
0 −1/2

]

.

At this point, the formula from earlier in the proof (mentioned in class as well) is relevant,
namely

στ−(1+c)/aστ−aστ(b−1)/a =

[

a b
c d

]

.

We want to obtain the matrix σγ, and so we have −(1 + c)/a = −(1 + 0)/(−2) = 1/2and
−a = 2 and (b − 1)/a = (−5 − 1)/(−2) = 3.

In summary, we have derived the matrix product στ1/2στ2στ3 = σγ. Since −σσ is the
identity matrix, we can multiply both sides by −σ on the left to simplify the equation to
τ1/2στ2στ3 = γ. Finally, since the product of matrices corresponds to the composition of the
appropriate fractional linear transformations, we see that using the five functions

h1/2(z) = z + 1
2
, g(z) = −1

z
, h2(z) = z + 2, g(z) = − 1

z
, and h3(z) = z + 3,

we have h1/2 ◦ g ◦ h2 ◦ g ◦ h3 = f . This says, by the way, that
( −1

(

−1
z+3

)

+ 2

)

+ 1
2

=
−1

4z + 10
.

(Remark: there are many possible answers to this question.)
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VI. Suppose γ is a matrix in SL2(R) such that the fractional linear transformation Tγ fixes
the point i. Show that

γ =

[

cos θ sin θ
− sin θ cos θ

]

for some real number θ.

We write γ =
[

a b
c d

]

, where a, b, c, d are real numbers with ad− bc = 1. If Tγ is to fix the

point i, then we must have (ai + b)/(ci + d) = i or, cross-multiplying, ai + b = (ci + d)i =
−c+di. This happens if and only if d = a and c = −b, which turns the determinant equation
into a(a)− b(−b) = a2 + b2 = 1. In particular, a is at most 1 in absolute value, so we are free
to define θ = arccos a. Then a = cos θ, and b equals

√
1 − a2 =

√
1 − cos2 θ, which is either

sin θ or − sin θ. Suppose first that b = sin θ, then we immediately have c = −b = − sin θ and
d = a = cos θ, and our matrix is in the desired form. If on the other hand b = − sin θ, then we
simply set θ′ = −θ, so that a = cos θ = cos(−θ) = cos θ′ and b = − sin θ = sin(−θ) = sin θ′.
In this case, we have our matrix in the desired form with θ′ instead of θ.

VII. What is the shortest path between the points A = 12i and B = 7 + 5i in the Poincaré
half-plane? (Be specific.) Find an isometry that sends A and B to two points that lie on
the same vertical line, and use this isometry to calculate the (hyperbolic) distance between
A and B. By using the cross ratio with the points A and B directly, calculate the distance
between them a second way.

We know that the shortest path between the points A = 12i and B = 7+5i in the Poincaré
half-plane is an arc of a Euclidean circle centered on the x-axis. Therefore we let the center
of this circle be (x, 0) and solve for the value of x that provides equal distances to both A
and B:

(x − 0)2 + (0 − 12)2 = (x − 7)2 + (0 − 5)2

x2 + 144 = x2 − 14x + 49 + 25

14x = 49 + 25 − 144 = −70

x = −5

Thus the semicircle is centered at the point −5 and has radius
√

(−5 − 0)2 + (0 − 12)2 = 13,
so that its endpoints are −5 − 13 = −18 and −5 + 13 = 8.

We now find an isometry that sends A to B to vertically-aligned points. Following our
general recipe, we begin by horizontally translating so that one endpoint, say 8, is sent to 0.
That is, we begin with h−8(z) = z − 8. Then we invert in the unit circle, using f(z) = 1/z̄.
The first isometry h−8(z) sends 12i to −8 + 12i and 7 + 5i to −1 + 5i, and so the composed
isometry f ◦ h(z) = 1/(z − 8) sends 12i and 7 + 5i to

−8 + 12i

(−8)2 + 122
=

−8 + 12i

208
= − 1

26
+

3

52
i and

−1 + 5i

(−1)2 + 52
=

−1 + 5i

26
= − 1

26
+

5

26
i.

Therefore the distance between A and B is equal to the distance between − 1
26

+ 3
52

i and

− 1
26

+ 5
26

i, which allows us to use the vertical-line formula: the answer is | ln
(

3
52

/ 5
26

)

| =

| ln
(

3
52

· 26
5

)

| = | ln 3
10
| = ln 10

3
.
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Alternatively, we can use the cross ratio with the points A and B and the endpoints −18
and 8 directly:

(12i, 7 + 5i;−18, 8) =
(12i − (−18)

12i − 8

)/(7 + 5i − (−18)

7 + 5i − 8

)

=
( 18 + 12i

−8 + 12i
· −1 + 5i

25 + 5i

)

=
6

4 · 5
( 3 + 2i

−2 + 3i
· −1 + 5i

5 + i

)

=
3

10
· −3 + 15i − 2i + 10i2

−10 − 2i + 15i + 3i2
=

3

10
· −13 + 13i

−13 + 13i
=

3

10
.

Therefore the distance from A to B is | ln(12i, 7 + 5i;−18, 8)| = | ln 3
10
| = ln 10

3
, as before.

VIII. Consider two points A = x1 + i and B = x2 + i in the Poincaré half-plane. Let `A and
`B be the vertical lines going through A and B, respectively. Show that the angle between the
(hyperbolic) lines `A and AB is

arctan

(

2

|x1 − x2|

)

,

and the same for the angle between the lines `B and AB. Then show that the (hyperbolic)
area of the (hyperbolic) quadrilateral whose vertices are

(−1 −
√

2) + i, (1 −
√

2) + i, (−1 +
√

2) + i, and (1 +
√

2) + i

equals π/2. You may use the values tan(π/8) =
√

2 − 1 and tan(3π/8) =
√

2 + 1 without
having to prove them.

Let A′ be a point on `A above A, and let C = x1 be the endpoint of `A. We know that the
center of the Euclidean semicircle defining the line AB must lie on the perpendicular bisector
of the Euclidean segment AB, and so that center is clearly O = (x1+x2)/2. Draw the tangent
line to this semicircle at A, and let D be a point on that tangent line above A. We are trying
to calculate ∠A′AD. However, ∠A′AD = 180◦−∠DAO−∠OAC = 90◦−∠OAC, since the
Euclidean tangent line AD is perpendicular to the Euclidean radius OA. Also, ∠AOC =
180◦−∠OCA−∠OAC = 90◦−∠OAC since the sum of the angles of the Euclidean triangle
4ACO equals 180◦. We conclude that ∠A′AD = ∠AOC. However, we can easily read off
from the right triangle 4ACO that tanAOC = |AC|/|CO| = 1/(|x1 − x2|/2) = 2/|x1 − x2|.
Thus ∠A′AD = arctan(2/|x1 − x2|) as claimed. The same proof applies to the angle at B
as well.

A B

C O

A′

D

W X Y Z

W ′ X′ Y ′ Z′
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Now we calculate the area of the quadrilateral with vertices W = (−1 −
√

2) + i, X =
(1−

√
2)+ i, Y = (−1+

√
2)+ i, and Z = (1+

√
2)+ i. Corollary 7.13.3 tells us that the area

of a triangle is π minus the sum of its three angles (measured in radians); and we have seen
that we can always divide a quadrilateral into two triangles. It follows easily that the area
of a quadrilateral is 2π minus the sum of its four angles. If we let W ′, X ′, Y ′, Z ′ be points
on the vertical lines above W, X, Y, Z respectively, then we have

area(WXY Z) = 2π − ∠ZWX − ∠WXY − ∠XY Z − ∠Y ZW

= 2π − (∠W ′WX − ∠W ′WZ) − (∠X ′XW + ∠X ′XY )

− (∠Y ′Y X + ∠Y ′Y Z) − (∠Z ′ZY − ∠Z ′ZW )

= 2π + 2∠W ′WZ − 4∠W ′WX − 2∠X ′XY,

where we have taken the symmetries of the various angles into account. By the first part of
the problem, we have:

∠W ′WZ = arctan
( 2

|(
√

2 + 1) − (−
√

2 − 1)|

)

= arctan
( 1√

2 + 1

)

= arctan(
√

2 − 1) =
π

8
;

∠W ′WX = arctan
( 2

|(−
√

2 + 1) − (−
√

2 − 1)|

)

= arctan 1 =
π

4
;

∠X ′XY = arctan
( 2

|(
√

2 − 1) − (−
√

2 + 1)|

)

= arctan
( 1√

2 − 1

)

= arctan(
√

2 + 1) =
3π

8
.

Therefore

area(WXY Z) = 2π + 2∠W ′WZ − 4∠W ′WX − 2∠X ′XY = 2π + 2 · π

8
− 4 · π

4
− 2 · 3π

8
=

π

2
as claimed.
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