
Math 331, Section 201
Solutions for Team Problem #4

(March 6, 2003)

The Riemann zeta-function ζ(s) is defined by the formula

ζ(s) =
∞
∑

n=1

1
ns .

In this team problem you will recreate Euler’s proof of the formula for ζ(2n), involving
the Bernoulli numbers Bn. You may assume the following facts, the first of which you
should know already but the second of which is somewhat more advanced:

sin t =
eit − e−it

2i
(∗)

where i =
√
−1, and

sin πx = πx
∞
∏
n=1

(
1 − x2

n2

)
. (∗∗)

Note: many of the manipulations in the following solutions are not valid for arbitrary
infinite sums and products. Nevertheless, they are valid for these sums and products;
since such details are not the main point of this exercise, we do not dwell on them below.

I. Use the formulas (∗) and (∗∗), with judicious choices of x and t, to prove the formula

ez/2 − e−z/2 = z
∞
∏
n=1

(
1 +

z2

4π2n2

)
.

Setting t = z/2i in formula (∗) gives

sin
z
2i

=
ez/2 − e−z/2

2i
,

while setting x = z/2π i in the second formula gives

sin
z
2i

=
z
2i

∞
∏
n=1

(
1 − (z/2π i)2

n2

)
.

Comparing these two formulas gives

ez/2 − e−z/2

2i
=

z
2i

∞
∏
n=1

(
1 +

z2

4π2n2

)
,

and multiplying through by 2i gives the desired result.
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II. Multiply the previous formula through by ez/2, and then take logarithmic derivatives of both
sides (this means first take the logarithm, then take the derivative of the result). In this way prove
the formula

z
ez − 1

= 1 − z
2
+

∞
∑

n=1

2z2

4π2n2 + z2 .

Multiplying through by ez/2 yields

ez − 1 = zez/2
∞
∏
n=1

(
1 +

z2

4π2n2

)
,

which becomes (upon taking logarithms)

ln(ez − 1) = ln z +
z
2
+

∞
∑

n=1
ln

(
1 +

z2

4π2n2

)
.

Taking derivatives term by term yields

ez

ez − 1
=

1
z
+

1
2
+

∞
∑

n=1

(
1 +

z2

4π2n2

)−1
· 2z

4π2n2 =
1
z
+

1
2
+

∞
∑

n=1

2z
4π2n2 + z2 .

If we subtract 1 from both sides, we get

ez

ez − 1
− 1 =

1
ez − 1

=
1
z
− 1

2
+

∞
∑

n=1

2z
4π2n2 + z2 ,

whereupon multiplying through by z results in the desired formula.
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III. Considering both sides of the previous formula as generating functions, deduce that the only
nonzero odd-numbered Bernoulli number is B1 = − 1

2 . Deduce that the even-numbered Bernoulli
numbers alternate in sign starting with B2, that is, B2 > 0, B4 < 0, B6 > 0, and so on. Finally,
deduce the marvelous formula

ζ(2k) =
∞
∑

n=1

1
n2k =

22k−1π2k|B2k|
(2k)!

valid for all integers k ≥ 1.
We’ve seen in class that

z
ez − 1

=
∞
∑
k=1

Bk
k!

zk, (†)

so we can interpret the left-hand side as the generating function of the sequence ⟨Bk/k!⟩.
As for the right-hand side, we use the geometric series expansion

2z2

4π2n2 + z2 =
z2

2π2n2

(
1 − −z2

4π2n2

)−1
=

2z2

4π2n2

∞
∑
k=0

( −z2

4π2n2

)k
=

∞
∑
k=1

(−1)k−1z2k

22k−1π2kn2k

to obtain

1 − z
2
+

∞
∑

n=1

2z2

4π2n2 + z2 = 1 − z
2
+

∞
∑

n=1

( ∞
∑
k=1

(−1)k−1z2k

22k−1π2kn2k

)
= 1 − z

2
+

∞
∑
k=1

(−1)k−1z2k

22k−1π2k

( ∞
∑

n=1

1
n2k

)
= 1 − z

2
+

∞
∑
k=1

(−1)k−1ζ(2k)z2k

22k−1π2k . (††)

Comparing the coefficients of the two formal power series (†) and (††), we immediately
conclude that B0 = 1 · 0! = 1 and B1 = − 1

2 · 1! = − 1
2 , and that B2k+1 = 0 for all k ≥ 1.

Finally, we have
B2k
(2k)!

=
(−1)k−1ζ(2k)

22k−1π2k

for all k ≥ 1, and solving for ζ(2k) yields

ζ(2k) =
22k−1π2k(−1)k−1B2k

(2k)!
.

Now ζ(2k) is clearly positive from its definition, and so we conclude that (−1)k−1B2k is
also positive, that is, B2k has the same sign as (−1)k−1 and (−1)k−1B2k = |B2k|. This
establishes the last assertions of the problem.
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