Math 331, Section 201
Solutions for Team Problem #4
(March 6, 2003)

The Riemann zeta-function {(s) is defined by the formula
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In this team problem you will recreate Euler’s proof of the formula for {(2n), involving
the Bernoulli numbers B,,. You may assume the following facts, the first of which you
should know already but the second of which is somewhat more advanced:
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Note: many of the manipulations in the following solutions are not valid for arbitrary
infinite sums and products. Nevertheless, they are valid for these sums and products;
since such details are not the main point of this exercise, we do not dwell on them below.

I. Use the formulas (x) and (xx), with judicious choices of x and t, to prove the formula
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Setting t = z/2i in formula (x) gives
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while setting x = z/27i in the second formula gives
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Comparing these two formulas gives
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and multiplying through by 2i gives the desired result.
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II. Multiply the previous formula through by €%/, and then take logarithmic derivatives of both
sides (this means first take the logarithm, then take the derivative of the result). In this way prove
the formula
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Multiplying through by e*/< yields
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which becomes (upon taking logarithms)
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Taking derivatives term by term yields
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If we subtract 1 from both sides, we get
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whereupon multiplying through by z results in the desired formula.



II1. Considering both sides of the previous formula as generating functions, deduce that the only
nonzero odd-numbered Bernoulli number is By = —%. Deduce that the even-numbered Bernoulli
numbers alternate in sign starting with By, that is, By > 0, By < 0, Bg > 0, and so on. Finally,
deduce the marvelous formula
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valid for all integers k > 1.

We’ve seen in class that 5
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so we can interpret the left-hand side as the generatmg function of the sequence (B /k!).
As for the right-hand side, we use the geometric series expansion
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Comparing the coefficients of the two formal power series (1) and (t1), we immediately
conclude that By = 1-0! = 1 and By = —% 1 = —%, and that Byy,1 = O forall k > 1.
Finally, we have
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for all k > 1, and solving for ¢(2k) yields
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Now ¢(2k) is clearly positive from its definition, and so we conclude that (—1)¥1By is
also positive, that is, By has the same sign as (—1)*~! and (—1)*"1By, = |By|. This
establishes the last assertions of the problem.
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