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Formulas
On the exam itself, I'll add a few more words to help indicate what the notations mean. But

these will be the formulas included with the exam.
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Let C be a (strangely shaped) chessboard contained in an n x n board. If 7 is the number of
ways of placing k non-attacking rooks on C', then the number of permutations of {1,2,...,n}
that hit C' in exactly j squares is
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Lagrange Inversion: If f, ¢, and u are power series in ¢t with ¢(0) # 0 and u = t¢(u), then
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If f(2) is admissible, a(r) =rf'(r)/f(r), b(r) = rd'(r), a(r,) = n, then
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If p(z) is a polynomial with [z!]p(2) # 0, then e?*) is admissible.




