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Formulas

On the exam itself, I’ll add a few more words to help indicate what the notations mean. But

these will be the formulas included with the exam.
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ops←→ f(x) then, for h ≥ 1,
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Let C be a (strangely shaped) chessboard contained in an n×n board. If rk is the number of

ways of placing k non-attacking rooks on C, then the number of permutations of {1, 2, . . . , n}
that hit C in exactly j squares is

[xj]
∑

k

(n− k)!rk(x− 1)k.
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Lagrange Inversion: If f , φ, and u are power series in t with φ(0) (= 0 and u = tφ(u), then
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}
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.
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If f(z) is admissible, a(r) = rf ′(r)/f(r), b(r) = ra′(r), a(rn) = n, then

[zn]f(z) ∼ f(rn)

rn
n

√
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.

If p(z) is a polynomial with [z1]p(z) (= 0, then ep(z) is admissible.


