
Math 437/537 Homework #2
due Friday, October 3, 2003 at the beginning of class

This homework is typical for this course, in that it is not short and the problems are
(for the most part) not trivial. Start thinking about them early on, and if you’ve thought
about a problem for a while but are still stuck, ask me for a hint. Several hints are pretty
ubiquitous, so consider first whether any of the following will help with your problem-
stuck-on du jour:

Chinese Remainder Theorem; clever factorizations of polynomials; Euler’s
Theorem; Hensel’s Lemma; induction.

I. Let a and k be integers greater than 1.
(a) Suppose that ak − 1 is prime. Prove that a = 2 and that k is prime.
(b) Suppose that ak + 1 is prime. Prove that a is even and that k is a power of 2.

II. Niven, Zuckerman, and Montgomery, Section 2.5, p. 86, #5

III. Niven, Zuckerman, and Montgomery, Section 2.8, p. 108, #30

IV. Let a, b, and m be integers with m 6= 0 and (a, m) = (b, m) = 1. Then the orders
of a, b, and ab modulo m are all well-defined; let them be denoted by h, k, and `,
respectively. Prove that

hk
(h, k)2 | ` and ` | hk

(h, k)
.

V. (a) Let k ≥ 0 be a fixed integer and p a fixed prime. Find, with proof, a formula
for the number of solutions of the congruence xk ≡ 1 (mod p) in terms of k
and p. Do not use any results from Niven, Zuckerman, and Montgomery past
page 99. [Note: the restriction k ≥ 0 is not really necessary, as long as we
interpret x−k as x̄k.]

(b) Let a be an integer and p a prime. Let f (x) and g(x) be polynomials with inte-
ger coefficients, and set h(x) = f (x)g(x). Suppose that a is a root of f modulo
p but not a root of h′ modulo p. Prove that a is not a root of f ′ modulo p.

(c) Let p be a prime and k a positive integer. How many solutions are there to the
congruence

x4 − x3 + x2 − x + 1 ≡ 0 (mod pk)?

[Remark: the polynomials xn − 1 for n | 10 seem relevant.]
(d) How many solutions are there to the congruence

x4 − x3 + x2 − x + 1 ≡ 0 (mod 2,269,355)?
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VI. Consider the sequence 2, 22, 222
, 2222

, . . . . (In other words, this is the sequence
{xk} defined recursively by x1 = 2 and xk+1 = 2xk for k ≥ 1.) Prove that for any
positive integer m, this sequence is eventually constant modulo m.

VII. Prove the formula
∑
d|n

φ(d) = n

by writing n in terms of its prime-power factorization, using the known formula
for the Euler phi-function on a factored argument, and manipulating the resulting
sums and products (i.e., “Proof 1” from class). At some point you will switch the
order of sums and products; justify the correctness of this step explicitly.

VIII. Define g(x) = (x2 − 2)(x2 − 17)(x2 − 34). Prove that for every integer m, the
congruence g(x) ≡ 0 (mod m) has a solution. [Remark: it is obvious that g(x) = 0
has a solution in the reals but no solution in the rational numbers. Therefore g(x)
is an example of a polynomial that has “local” solutions everywhere, in the sense
alluded to in the lecture on p-adic numbers, but no “global” solutions.]

IX. Do one of the following two problems, one of which involves some knowledge
from abstract algebra, the other of which involves a technique from real analysis.
(You may do both for extra credit if you wish.)

• Prove that every finite abelian group can be found inside some multiplicative
group Z×

m. In other words, for every finite abelian group G, prove that there
exists a positive integer m such that there is an injective group homomorphism
from G into Z×

m. [Hint: structure theorem.]

• Fix a prime p and a polynomial f (x) with integer coefficients. Suppose that
the congruence f (x) ≡ 0 (mod pk) has a solution for every k ≥ 1. Prove that
f (x) has a root in the p-adic integers. [Recall that every p-adic integer can be
represented uniquely in the form

y = a0 + a1 p + a2 p2 + a3 p3 + . . . ,

where 0 ≤ a j < p for each j ≥ 0. Any such p-adic integer can be considered
modulo pk by truncation: y ≡ a0 + a1 p + · · ·+ ak−1 pk−1 (mod pk). Two quan-
tities in the p-adic integers are equal if and only if they are congruent modulo
pk for every k ≥ 1.]


