Math 437/537 Homework \#1

due Friday, September 14, 2007 at the beginning of class
Homework policies: You are permitted to consult one another concerning the homework assignments, but your submitted solutions must be written by you in your own words. I will consider not only correctness but also clarity when evaluating your work.
I. Calculate $(3724,817)$ and the least common multiple [3724, 817]. Find integers x and y such that $3724 x+817 y=(3724,817)$. (Do this problem by hand, showing your work.)
II. For this problem, use only the material up to Section 1.2 in your proof. (In particular, don't use the notion of a prime!)
(a) Suppose that a, b, and d are integers with $d \mid a b$. Prove that there are integers e and f with $e \mid a$ and $f \mid b$ such that $d=e f$.
(b) If we add the assumption in part (a) that $(a, b)=1$, prove that the integers e and f are unique up to sign. Show by example that without the added assumption, this uniqueness can fail.
III. Niven, Zuckerman, and Montgomery, Section 1.3, p. 29, \#13
IV. Niven, Zuckerman, and Montgomery, Section 1.3, p. 31, \#26
V. Prove that any nonzero integer m divides some integer of the form $K(i, j)$, where $K(i, j)$ is defined to be the $(i+j)$-digit number with decimal expansion $K(i, j)=\underbrace{11 \ldots 11}_{i} \underbrace{00 \ldots 00}_{j}$.
VI. (a) Let p be an odd prime and r a positive integer. Let $\left\{a_{1}, \ldots, a_{\phi\left(p^{r}\right)}\right\}$ be a reduced residue system modulo p^{r}. Prove that $a_{1} \times \cdots \times a_{\phi\left(p^{r}\right)} \equiv-1\left(\bmod p^{r}\right)$.
(b) Let p be any prime and r a positive integer, and set $s=\left(p^{r}-1\right) /(p-1)$. Prove that $\left(p^{r}\right)!$ is divisible by p^{s} and that $\left(p^{r}\right)!/ p^{s} \equiv(-1)^{r}(\bmod p)$.
VII. Find the last three digits of the integer $997^{\left(1202^{482}\right)}$. (Hint: Euler's Theorem. Believe it or not, this one can be done by hand!)
VIII. Niven, Zuckerman, and Montgomery, Section 2.1, p. 57, \#14
IX. Niven, Zuckerman, and Montgomery, Section 2.1, p. 57, \#20
X. Niven, Zuckerman, and Montgomery, Section 2.1, p. 57, \#27
XI. Niven, Zuckerman, and Montgomery, Section 2.1, p. 59, \#54
XII. (a) Which integers x satisfy all of the congruences $x \equiv 3(\bmod 14), x \equiv 5(\bmod 15)$, and $x \equiv 7(\bmod 17)$ simultaneously?
(b) Find the smallest positive integer n such that $2 n \equiv 3(\bmod 5), 3 n \equiv 4(\bmod 7), 4 n \equiv$ $5(\bmod 9)$, and $5 n \equiv 6(\bmod 11)$. Hint: there's a painless way.

