## Math 437/537 Homework \#2

due Friday, September 28, 2007 at the beginning of class

For all of these problems, show all of your calculations; do not use brute-force or exhaustive approaches, and do not use a computer (although using a calculator for arithmetic is fine).
I. (a) Find all solutions to each of the following congruences (individually):

$$
76 x \equiv 90(\bmod 105) ; \quad 77 x \equiv 91(\bmod 105) ; \quad 78 x \equiv 92(\bmod 105) .
$$

(b) Find all lattice points on the line $77 x-105 y=91$. Which of these lattice points have the property that the line segment connecting them to the origin contains other lattice points?
II. A squarefree number is an integer that is not divisible by any nontrivial square; that is, $n \in \mathbb{Z}$ is squarefree if and only if $d^{2} \mid n$ implies $d= \pm 1$. Prove that there are arbitrarily large gaps between consecutive squarefree numbers. (Hint: Chinese Remainder Theorem.)
III. Niven, Zuckerman, and Montgomery, Section 2.6, p. 91, \#7. (Use Hensel's Lemma; show your work.)
IV. Prove that every integer of the form $x^{18}+y^{18}$ lies in one of 15 residue classes modulo 703 .
V. (a) If $p$ is a prime, how many solutions are there to the congruence $x^{4}-x^{3}+x^{2}-x+1 \equiv$ $0(\bmod p)$ ? The answer should only depend on the last digit of $p$. (Hint: factor the polynomial $x^{10}-1$.)
(b) How many solutions are there to the congruence

$$
x^{4}-x^{3}+x^{2}-x+1 \equiv 0(\bmod 2,269,355) ?
$$

VI. Let $a, b$, and $m$ be integers with $m \neq 0$ and $(a, m)=(b, m)=1$. Let $r$ denote the order of $a(\bmod m)$, let $s$ denote the order of $b(\bmod m)$, and let $t$ denote the order of $a b(\bmod m)$. Prove that

$$
\left.\frac{r s}{(r, s)^{2}} \right\rvert\, t \quad \text { and } \quad t \left\lvert\, \frac{r s}{(r, s)}\right.
$$

VII. Niven, Zuckerman, and Montgomery, Section 2.8, p. 107, \#24
VIII. Niven, Zuckerman, and Montgomery, Section 2.8, p. 107, \#26
IX. Find all Carmichael numbers of the form $3 p q$ where $p$ and $q$ are prime.
X. Niven, Zuckerman, and Montgomery, Section 2.8, p. 109, \#37
XI. Show that the only consecutive powers of 2 and 3 are (1,2), (2, 3), (3, 4), and (8, 9). (Hint: consider the equations $2^{m}-3^{n}= \pm 1$ and the order of 2 modulo $3^{n}$.)
XII. Determine the number of solutions to the congruence $22 x^{2}+10 x+35 \equiv 0(\bmod p)$ for each of the primes $p=103, p=149$, and $p=227$.

