Math 437/537 Homework \#3

due Monday, October 15, 2007 at the beginning of class
I. Niven, Zuckerman, and Montgomery, Section 2.4, p. 83, \#19
II. Given integers a_{1}, \ldots, a_{j} and nonzero integers m_{1}, \ldots, m_{j}, describe a polynomial-time algorithm that computes the solution to the system of simultaneous congruences

$$
x \equiv a_{1}\left(\bmod m_{1}\right), \quad x \equiv a_{2}\left(\bmod m_{2}\right), \quad \ldots \quad x \equiv a_{j}\left(\bmod m_{j}\right) .
$$

Notice that you are not allowed to assume that the moduli m_{i} are pairwise relatively prime. By "describe the algorithm", I do not mean every single line of code you would write, but rather a medium-level description of the important choices and computations that are made. Justify why your algorithm is polynomial-time.
III. Niven, Zuckerman, and Montgomery, Section 2.5, p. 86, \#2
IV. The following message was encrypted using the RSA encryption scheme using the public key $n=99407207, e=51082705$:

79033274, 43938308, 3682551, 67435692, 76389994, 79201196
Break the code to read the message. You may use a computer to do your calculations; just tell me what computations you performed.
V. (Alice and Bob are talking on the phone and want to flip a coin so that each has a 50% chance of winning, but they're afraid that someone might cheat if they flip an actual coin.) The following protocol is often referred to as "flipping coins over the telephone":

1. Alice finds two large primes p and q that are both congruent to $3(\bmod 4)$. She keeps them secret but tells Bob the product $n=p q$.
2. Bob chooses a random number x and computes $y \equiv x^{2}(\bmod n)$. He keeps x secret and tells y to Alice.
3. Alice computes all the square roots of y modulo n. She chooses one at random, z, and tells it to Bob.
4. At this point, if Bob can tell Alice what the primes p and q are, he wins the coin flip; otherwise, he concedes the coin flip to Alice.
Discuss why this is a reasonable protocol to simulate a coin flip-that is, discuss why Alice and Bob each have about a 50% chance of winning. (Are the chances of winning exactly 50% for both players, or does one have a tiny advantage?) Explain whether or not all of the calculations involved can be done in polynomial time,
VI. Let p be an odd prime, and write $p-1=2^{k} q$ where q is odd. Suppose a is a quadratic nonresidue modulo p. Prove that $a^{2 j} q$ has order exactly 2^{k-j} modulo p for every $0 \leq j \leq k$.
VII. Hint for both parts: use the previous problem.
(a) Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#15
(b) Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#16
VIII. Calculate the least nonnegative residue of $5^{(771+1) / 4}(\bmod 771)$. Determine whether 5 is a quadratic residue or nonresidue modulo 771. How do these results relate to the discussion in the last paragraph of Niven, Zuckerman, and Montgomery, page 110?
IX. Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#18
X. Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#19
XI. Let $g(x)=x^{6}-53 x^{4}+680 x^{2}-1156=\left(x^{2}-2\right)\left(x^{2}-17\right)\left(x^{2}-34\right)$. Show that $g(x)=0$ has solutions in the real numbers and that $g(x) \equiv 0(\bmod m)$ has solutions for every modulus m, but that $g(x)=0$ has no solutions in the rational numbers. (Hint: when m equals a power of 2 , note that $x=1$ is a solution modulo 8 ; use Theorem 2.24.)
[Context: For a polynomial equation with integer coefficients to have a rational solution (a "global" solution), it's clearly necessary for it to have both a real solution and a solution modulo m for every m ("local" solutions); this problem shows that existence of these local solutions isn't sufficient in general.]
XII. Hint: look for short solutions to these problems!
(a) Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#14
(b) Niven, Zuckerman, and Montgomery, Section 3.3, p. 148, \#14
