Math 437/537 Homework \#4

due Monday, October 29, 2007 at the beginning of class
I. Prove the following theorem of Dickson from 1894: (x, y, z) is a primitive Pythagorean triple if and only if $(x, y, z)=(\rho+\tau, \sigma+\tau, \rho+\sigma+\tau)$ for some positive integers ρ, σ, τ satisfying $(\rho, \sigma)=1$ and $\tau^{2}=2 \rho \sigma$. Given such a triple $(\rho+\tau, \sigma+\tau, \rho+\sigma+\tau)$, how can we recover the values of r and s that give the representation in Theorem 5.5?
II. (a) Niven, Zuckerman, and Montgomery, Section 5.3, p. 233, \#10
(b) Niven, Zuckerman, and Montgomery, Section 5.4, p. 240, \#10
III. Niven, Zuckerman, and Montgomery, Section 5.4, p. 239, \#6 and \#7 (the two problems go together naturally)
IV. Let $g(x, y)=x+2 x^{2}+3 x^{3}+3 y+y^{3}$.
(a) Two points such that $g(x, y)=10$ are $(1,1)$ and $(-3,4)$. Find a third point (u, v) with rational coordinates such that $g(u, v)=10$ by considering the line passing through the first two points.
(b) Find two points (u, v) with rational coordinates such that $g(u, v)=0$. One such point should be obvious; find the second by considering the tangent line to the curve $g(x, y)=0$ passing through the first point.
V. Niven, Zuckerman, and Montgomery, Section 5.6, p. 260, \#5. In addition, find two nonzero rational numbers x, y such that $y^{2}=x^{3}+2 x^{2}$ and both $|x|$ and $|y|$ are less than $\frac{1}{100}$.
VI. (a) Find the smallest number n such that there are exactly 48 ordered pairs (a, b) of integers with $a^{2}+b^{2}=n$.
(b) Find all numbers n such that $\phi(n)=120$.
VII. Prove that for every number n, there is a number x such that $\tau(n x)=n$.
VIII. Niven, Zuckerman, and Montgomery, Section 4.3, p. 196, \#18
IX. Define $f(n)=\sum_{d \mid n} \phi((d, n / d))$ for all numbers n. (That's the Euler phi-function applied to a gcd.)
(a) Prove that f is a multiplicative function.
(b) Prove that there exist multiplicative functions g and h such that $f(n)=\sum_{d \mid n} g(d)$ and $g(n)=\sum_{d \mid n} h(d)$. Furthermore, prove that for this function h, we have $h(n) \neq 0$ if and only if n is a perfect square such that $2^{2} \nVdash n$.
X. The largest perfect number known today is $n_{44}=2^{p-1}\left(2^{p}-1\right)$, where $p=32,582,657$. Determine how many digits n_{44} has, and find the first three digits (on the left) and the last three digits (on the right). You may use a calculator to do arithmetic; just indicate what calculations you did. Do not evaluate n_{44} directly.
XI. For any positive integer n, define $r_{1}(n)$ to be the number of positive divisors of n that are congruent to $1(\bmod 3)$ and $r_{2}(n)$ to be the number of positive divisors of n that are congruent to $2(\bmod 3)$. Find, with proof, the smallest positive integer n that is relatively prime to 6 and satisfies $r_{1}(n)>r_{2}(n)>0$.
XII. When n is a positive integer, a primitive nth root of unity is a complex number of the form $e^{2 \pi i k / n}$ where $(k, n)=1$. Equivalently, a primitive nth root of unity is a complex number z such that $z^{n}=1$ but $z^{m} \neq 1$ for any $0<m<n$. Define the nth cyclotomic polynomial $\Phi_{n}(x)$ to be the polynomial whose roots are precisely the $\phi(n)$ primitive nth roots of unity. For example, $\Phi_{6}(x)=\left(x-e^{\pi i / 3}\right)\left(x-e^{5 \pi i / 3}\right)=x^{2}-x+1$.
(a) Prove that

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}
$$

For example, $\Phi_{6}(x)=(x-1)^{1}\left(x^{2}-1\right)^{-1}\left(x^{3}-1\right)^{-1}\left(x^{6}-1\right)^{1}=x^{2}-x+1$.
(b) Define the von Mangoldt Lambda-function

$$
\Lambda(n)= \begin{cases}\ln p, & \text { if } n=p^{r} \text { with } p \text { prime and } r \geq 1 \\ 0, & \text { otherwise }\end{cases}
$$

So for example, $\Lambda(125)=\ln 5$. Prove the two identites

$$
\sum_{d \mid n} \mu(n / d) \ln d=\Lambda(n) \quad \text { and } \quad \sum_{d \mid n} \mu(d) \ln d=-\Lambda(n) .
$$

(Hint: $\ln d=\ln n-\ln (n / d)$.)
(c) Evaluate $\Phi_{n}(1)$ for every $n \geq 1$. (Hint: cancel factors of $x-1$.)

