
Math 437/537 Homework #4
due Monday, October 29, 2007 at the beginning of class

I. Prove the following theorem of Dickson from 1894: (x, y, z) is a primitive Pythagorean
triple if and only if (x, y, z) = (ρ + τ, σ + τ, ρ + σ + τ) for some positive integers ρ, σ, τ
satisfying (ρ, σ) = 1 and τ 2 = 2ρσ. Given such a triple (ρ + τ, σ + τ, ρ + σ + τ), how can
we recover the values of r and s that give the representation in Theorem 5.5?

II. (a) Niven, Zuckerman, and Montgomery, Section 5.3, p. 233, #10
(b) Niven, Zuckerman, and Montgomery, Section 5.4, p. 240, #10

III. Niven, Zuckerman, and Montgomery, Section 5.4, p. 239, #6 and #7 (the two problems go
together naturally)

IV. Let g(x, y) = x + 2x2 + 3x3 + 3y + y3.
(a) Two points such that g(x, y) = 10 are (1, 1) and (−3, 4). Find a third point (u, v) with

rational coordinates such that g(u, v) = 10 by considering the line passing through the
first two points.

(b) Find two points (u, v) with rational coordinates such that g(u, v) = 0. One such
point should be obvious; find the second by considering the tangent line to the curve
g(x, y) = 0 passing through the first point.

V. Niven, Zuckerman, and Montgomery, Section 5.6, p. 260, #5. In addition, find two nonzero
rational numbers x, y such that y2 = x3 + 2x2 and both |x| and |y| are less than 1

100
.

VI. (a) Find the smallest number n such that there are exactly 48 ordered pairs (a, b) of inte-
gers with a2 + b2 = n.

(b) Find all numbers n such that φ(n) = 120.

VII. Prove that for every number n, there is a number x such that τ(nx) = n.

VIII. Niven, Zuckerman, and Montgomery, Section 4.3, p. 196, #18

IX. Define f(n) =
∑

d|n φ
(
(d, n/d)

)
for all numbers n. (That’s the Euler phi-function applied

to a gcd.)
(a) Prove that f is a multiplicative function.
(b) Prove that there exist multiplicative functions g and h such that f(n) =

∑
d|n g(d) and

g(n) =
∑

d|n h(d). Furthermore, prove that for this function h, we have h(n) 6= 0 if
and only if n is a perfect square such that 22 6 ‖ n.

X. The largest perfect number known today is n44 = 2p−1(2p − 1), where p = 32,582,657.
Determine how many digits n44 has, and find the first three digits (on the left) and the last
three digits (on the right). You may use a calculator to do arithmetic; just indicate what
calculations you did. Do not evaluate n44 directly.
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XI. For any positive integer n, define r1(n) to be the number of positive divisors of n that
are congruent to 1 (mod 3) and r2(n) to be the number of positive divisors of n that are
congruent to 2 (mod 3). Find, with proof, the smallest positive integer n that is relatively
prime to 6 and satisfies r1(n) > r2(n) > 0.

XII. When n is a positive integer, a primitive nth root of unity is a complex number of the form
e2πik/n where (k, n) = 1. Equivalently, a primitive nth root of unity is a complex number
z such that zn = 1 but zm 6= 1 for any 0 < m < n. Define the nth cyclotomic polynomial
Φn(x) to be the polynomial whose roots are precisely the φ(n) primitive nth roots of unity.
For example, Φ6(x) = (x− eπi/3)(x− e5πi/3) = x2 − x + 1.
(a) Prove that

Φn(x) =
∏
d|n

(xd − 1)µ(n/d).

For example, Φ6(x) = (x− 1)1(x2 − 1)−1(x3 − 1)−1(x6 − 1)1 = x2 − x + 1.
(b) Define the von Mangoldt Lambda-function

Λ(n) =

{
ln p, if n = pr with p prime and r ≥ 1,

0, otherwise.

So for example, Λ(125) = ln 5. Prove the two identites∑
d|n

µ(n/d) ln d = Λ(n) and
∑
d|n

µ(d) ln d = −Λ(n).

(Hint: ln d = ln n− ln(n/d).)
(c) Evaluate Φn(1) for every n ≥ 1. (Hint: cancel factors of x− 1.)


