Math 437/537 Homework \#5

due Wednesday, November 14, 2007 at the beginning of class
I. Niven, Zuckerman, and Montgomery, Section 6.1, p. 301, \#9
II. Define a sequence of integers d_{2}, d_{3}, \ldots by $d_{2}=2$ and

$$
d_{j}=j^{\phi\left(d_{j-1}\right)} \quad(j \geq 3) .
$$

Using this sequence, define a sequence of rational numbers $\alpha_{2}, \alpha_{3}, \ldots$ by

$$
\alpha_{k}=\prod_{j=2}^{k}\left(1-\frac{1}{d_{j}}\right) .
$$

For instance, $\left\{d_{2}, d_{3}, \ldots\right\}=\left\{2,3,16,5^{8}, \ldots\right\}$ and $\left\{\alpha_{2}, \alpha_{3}, \ldots\right\}=\left\{\frac{1}{2}, \frac{1}{3}, \frac{5}{16}, \ldots\right\}$.
(a) Prove that $d_{k} \alpha_{k}$ is an integer for all $k \geq 2$.
(b) Prove that for every $\ell>k \geq 2$, we have

$$
\alpha_{k}>\alpha_{\ell}>\alpha_{k}\left(1-\frac{2}{d_{k+1}}\right) .
$$

(Hint: you could try proving the inequality

$$
\prod_{i=1}^{m}\left(1-x_{i}\right) \geq 1-\sum_{i=1}^{m} x_{i}
$$

which is valid for $0 \leq x_{1}, x_{2}, \ldots, x_{m} \leq 1$. The crude inequality $d_{j+1}>2 d_{j}$ might also be useful to prove.)
(c) Conclude that the limit

$$
\alpha=\lim _{k \rightarrow \infty} \alpha_{k}=\prod_{j=2}^{\infty}\left(1-\frac{1}{d_{j}}\right)
$$

exists and is transcendental. (Hint: each α_{k} is ridiculously close to $\alpha \ldots$.)
III. (a) Prove that $\sum_{j=1}^{\infty} 2^{-3^{j}}$ is irrational.
(b) Niven, Zuckerman, and Montgomery, Section 6.3, p. 312, \#10
IV. Niven, Zuckerman, and Montgomery, Section 6.4, p. 320, \#11
V. Using the generalized Minkowski's convex body theorem, prove the following statement: given $(a, p)=1$, there exist nonzero integers x and y with $|x|<\sqrt{p}$ and $|y|<\sqrt{p}$ such that $a x \equiv y(\bmod p)$. Hint: consider the lattice with corresponding matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & -1 & p
\end{array}\right) .
$$

VI. Niven, Zuckerman, and Montgomery, Section 7.2, p. 329, \#1
VII. (a) Calculate the 0 th, 1 st , 2nd, 3rd, and 4th convergents to π, showing your work.
(b) Determine, with proof, the first 1,000 partial quotients in the continued fraction representation of $2 \sqrt{2}$.
VIII. Niven, Zuckerman, and Montgomery, Section 7.3, p. 333, \#4
IX. (a) Niven, Zuckerman, and Montgomery, Section 7.3, p. 333, \#6
(b) Using the method in part (a) and the fact that $17682^{2} \equiv-1(\bmod 100049)$, find a representation of the prime 100049 as the sum of two squares, showing your work.
X. Niven, Zuckerman, and Montgomery, Section 7.4, p. 336, \#6
XI. For all nonnegative integers n, define

$$
\psi_{n}(x)=\sum_{k=0}^{\infty} \frac{x^{2 k}}{1 \cdot 3 \cdots(2 k+2 n-1) \cdot 2 \cdot 4 \cdots(2 k)} \quad \text { and } \quad w_{n}(x)=\frac{\psi_{n}(x)}{x \psi_{n+1}(x)} .
$$

Also define $u=w_{0}(1 / 2)$ and $v=(u-2) /(3-u)$.
(a) Show that $\psi_{0}(x)=\left(e^{x}+e^{-x}\right) / 2$ and $\psi_{1}(x)=\left(e^{x}-e^{-x}\right) /(2 x)$. Conclude that $w_{0}(x)=\left(e^{x}+e^{-x}\right) /\left(e^{x}-e^{-x}\right)$.
(b) Show that $e=(u+1) /(u-1)=\langle 2 ; 1+2 v\rangle$.
(c) Show that $\psi_{n}(x)=(2 n+1) \psi_{n+1}(x)+x^{2} \psi_{n+2}(x)$ for every $n \geq 0$. Conclude that $w_{n}(x)=(2 n+1) / x+1 / w_{n+1}(x)$ for every $n \geq 0$.
(d) For every positive integer k, prove that

$$
\frac{e^{1 / k}+e^{-1 / k}}{e^{1 / k}-e^{-1 / k}}=\langle k ; 3 k, 5 k, 7 k, 9 k, \ldots\rangle .
$$

Conclude that $v=\langle 0 ; 5,10,14,18,22,26, \ldots\rangle$.
XII. (a) Suppose that $\alpha=\langle 0 ; 2 b-1, \xi\rangle$ where $b \geq 2$ is an integer and $\xi \geq 2$ is a real number. Prove that $2 \alpha=\langle 0 ; b-1,1,1+2 /(\xi-1)\rangle$.
(b) Suppose that $\alpha=\left\langle 0 ; 2 b_{1}-1,2 b_{2}, 2 b_{3}, 2 b_{4}, \ldots\right\rangle$ where each $b_{j} \geq 2$ is an integer. Prove that $2 \alpha=\left\langle 0 ; b_{1}-1,1,1, b_{2}-1,1,1, b_{3}-1,1,1, b_{4}-1,1,1, \ldots\right\rangle$.
(c) Prove what is possibly the coolest continued fraction expansion ever (Euler, 1737):

$$
e=\langle 2 ; 1,2,1,1,4,1,1,6,1,1,8,1,1,10, \ldots\rangle
$$

