Math 437/537 Homework \#2

due Friday, September 26, 2008 at the beginning of class

For all of these problems, show all of your calculations; do not use brute-force or exhaustive approaches, and do not use a computer (although using a calculator for arithmetic is fine). Note: the symbol (H) next to a problem in Niven, Zuckerman, and Montgomery means that there is a hint in the back of the book.
I. A squarefree number is an integer that is not divisible by any nontrivial square; that is, $n \in \mathbb{Z}$ is squarefree if and only if $d^{2} \mid n$ implies $d= \pm 1$. Prove that there are arbitrarily large gaps between consecutive squarefree numbers. (Hint: Chinese Remainder Theorem.)
II. (a) Find all solutions to each of the following congruences (individually):

$$
76 x \equiv 90(\bmod 105) ; \quad 77 x \equiv 91(\bmod 105) ; \quad 78 x \equiv 92(\bmod 105) .
$$

(b) Find all lattice points on the line $77 x-105 y=91$. Which of these lattice points have the property that the line segment connecting them to the origin contains other lattice points?
III. For any positive integer k, define

$$
f_{k}(x)=k!\sum_{j=0}^{k} \frac{x^{j}}{j!}=x^{k}+k x^{k-1}+k(k-1) x^{k-2}+\cdots+k!x+k!
$$

Prove that f_{k} has a singular root $(\bmod p)$ if $p \leq k$ but no singular roots $(\bmod p)$ if $p>k$.
IV. Using Hensel's Lemma, find all solutions to the congruence $x^{4}+x^{3}+2 x^{2}+x \equiv 13\left(\bmod 7^{3}\right)$; show your work. (You may use trial and error to find all solutions to the congruence $(\bmod 7)$.
V. (a) If p is a prime, how many solutions are there to the congruence $x^{4}-x^{3}+x^{2}-x+1 \equiv$ $0(\bmod p)$? The answer should only depend on the last digit of p. (Hint: factor the polynomial $x^{10}-1$.)
(b) How many solutions are there to the congruence

$$
x^{4}-x^{3}+x^{2}-x+1 \equiv 0(\bmod 2,269,355) ?
$$

VI. Prove that every integer of the form $x^{18}+y^{18}$ lies in one of 15 residue classes modulo 703 .
VII. Let a, b, and m be integers with $m \neq 0$ and $(a, m)=(b, m)=1$. Let r denote the order of $a(\bmod m)$, let s denote the order of $b(\bmod m)$, and let t denote the order of $a b(\bmod m)$. Prove that

$$
\left.\frac{r s}{(r, s)^{2}} \right\rvert\, t \quad \text { and } \quad t \left\lvert\, \frac{r s}{(r, s)}\right.
$$

VIII. Suppose that for some integer a, we have $a^{n-1} \equiv 1(\bmod n)$ while $a^{(n-1) / p} \not \equiv 1(\bmod n)$ for every prime p dividing $n-1$. Show that n is prime.
IX. (a) Niven, Zuckerman, and Montgomery, Section 2.8, p. 107, \#18
(b) Niven, Zuckerman, and Montgomery, Section 2.8, p. 109, \#37
X. Niven, Zuckerman, and Montgomery, Section 2.8, p. 107, \#26
XI. Find all Carmichael numbers of the form $3 p q$ where p and q are prime.
XII. Niven, Zuckerman, and Montgomery, Section 2.8, p. 108, \#32

