Math 437/537 Homework \#3

due Friday, October 10, 2008 at the beginning of class
I. Let p be an odd prime, and write $p-1=2^{k} q$ where q is odd. Suppose a is a quadratic nonresidue modulo p. Prove that $a^{2^{j} q}$ has order exactly 2^{k-j} modulo p for every $0 \leq j \leq k$.
II. Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#15. (Hint: use problem I.)
III. Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#16. (Hint: use problem I.)
IV. Let p and q be primes, let k be a positive integer, and let a and b be reduced residues modulo p. Suppose that both a and b have order q^{k} modulo p. Prove that exactly $q-2$ of the numbers $a b, a b^{2}, \ldots, a b^{q-1}$ have order q^{k} modulo p.
V. Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#18
VI. Let $g(x)=x^{6}-53 x^{4}+680 x^{2}-1156=\left(x^{2}-2\right)\left(x^{2}-17\right)\left(x^{2}-34\right)$. Show that $g(x)=0$ has solutions in the real numbers and that $g(x) \equiv 0(\bmod m)$ has solutions for every modulus m, but that $g(x)=0$ has no solutions in the rational numbers. (Hint: when m equals a power of 2 , note that $x=1$ is a solution modulo 8 ; use Theorem 2.24.)
[Context: For a polynomial equation with integer coefficients to have a rational solution (a "global" solution), it's clearly necessary for it to have both a real solution and a solution modulo m for every m ("local" solutions); this problem shows that existence of these local solutions isn't sufficient in general.]
VII. Hint: look for short solutions to these problems!
(a) Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#14
(b) Niven, Zuckerman, and Montgomery, Section 3.3, p. 148, \#14
VIII. Niven, Zuckerman, and Montgomery, Section 3.2, p. 141, \#19
IX. Niven, Zuckerman, and Montgomery, Section 2.4, p. 83, \#19. Do not use the fact that there are infinitely many Carmichael numbers.
X. Niven, Zuckerman, and Montgomery, Section 2.5, p. 86, \#2
XI. The following message was encrypted using the RSA encryption scheme using the public key $n=99407207, e=51082705$:

$$
\text { 79033274, 43938308, 3682551, 67435692, 76389994, } 79201196
$$

Break the code to read the message. You may use a computer to do your calculations; just tell me what computations you performed.
XII. (Alice and Bob are talking on the phone and want to flip a coin so that each has a 50% chance of winning, but they're afraid that someone might cheat if they flip an actual coin.) The following protocol is often referred to as "flipping coins over the telephone":

1. Alice finds two large primes p and q that are both congruent to $3(\bmod 4)$. She keeps them secret but tells Bob the product $n=p q$.
2. Bob chooses a random number x and computes $y \equiv x^{2}(\bmod n)$. He keeps x secret and tells y to Alice.
3. Alice computes all the square roots of y modulo n. She chooses one at random, z, and tells it to Bob.
4. At this point, if Bob can tell Alice what the primes p and q are, he wins the coin flip; otherwise, he concedes the coin flip to Alice.
Discuss why this is a reasonable protocol to simulate a coin flip-that is, discuss why Alice and Bob each have about a 50% chance of winning. (Are the chances of winning exactly 50% for both players, or does one have a tiny advantage?) Explain whether or not all of the calculations involved can be done in polynomial time.
