Thursday, November 14 $|x - \frac{1}{5}| \le \frac{1}{5} - \frac{1}{5}$ Why does this result in Infinisely many Recall: distinct to? Given to, the mequility Lemme² If $\frac{2}{b}$, $\frac{2}{d}$ are distinct rational number, then $|\frac{2}{b} - \frac{2}{d}| \ge \frac{1}{|bd|}$. Theorem (Dirichter) Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. 12-BL < bCATIO is impossible once $n+1 > \frac{1}{b[x-\frac{1}{b}]} = \frac{1}{1bx-a_1} < here vr use$ $x \in \mathbb{Q}$. There exists \$ \$Q with 1665n such that Lemme? Let p(X) e DIX] have degree d, $|x - \frac{a}{b}| \leq \frac{1}{b(n+1)}$ and let $\frac{2}{6} \in \mathbb{Q}$. If $p(\frac{2}{6}) \neq 0$, then Corollosy: If XEIRIR, then there se 1p[=]] > 1/2. infinitely many distinct rational numbers of Remarks the d=1 cose is Lemmis the such that $|x - \frac{2}{6}| < \frac{1}{2}$. Remark: If x = = were rational, then p(x) = nx - m, $m |p^{2}_{o}| = |m_{o} - m| = \frac{1}{b}$ 1x-Blzzis is impossible when bod, by Lemna *. ≥ (z-m) s-1. Proof. For every nGIN, Dirichlet's theorem gives us some & weth ben and

Lerms? Let p(X) & ZIX] have degree d, Examples: . "Algebraic of degree 1" is and let $\frac{2}{b} \in \mathbb{Q}$. If $p(\frac{2}{b}) \neq 0$, then $lp(\frac{2}{b}) l \ge \frac{1}{b^2}$. the some as "notional": 2 is a 1000 of p(X) = 6X - 2. · 1537 15 reproduct degree 2: $\frac{Prof'}{Prof'} \quad \text{let } p(\chi) = c_1 \chi' + c_{d-1} \chi' + \cdots$ $p(x) = x^2 - 537.$ $+ C_2 \chi^2 + C_1 \chi + C_0$, where $C_j \in \mathbb{Z}$ and $C_d \neq 0$. Then · 3/4+5/8 is absolute of degree 15: p(x) = (x³-4)⁵-6. Eifthisis $b^{d}p(\frac{z}{b}) = c_{d}a^{d} + c_{d-1}a^{-1}b + \dots$ $+ c_{d}a^{2}b^{d-2} + c_{d}ab^{d-1} + c_{0}b^{a} \in \mathbb{Z} \setminus 303.$ · Not all algebraic numbers can be written with "nested radiok" - Galois theory. Thus 16 p[]] =1. / Exercise: Prove that the degree of on Definition? Let a EIR. We say a is obsebrote number is unique Hint: if all, blad & ZEX]; deg 6>deg 3, algebraic of degree of if there exists an meducible polynomial p(X) & TIX] of and atai)= 0= blain the write degree d such that plad = 0. If a is not degree doin, we b(x) = alx)q(x) + r(x) with deg o < deg on Coll & transcendental.

Theorem (Liouville, 1842); let & ke $\frac{1}{b^{d}} \leq \left| p\left(\frac{2}{b}\right) \right| = \left| \alpha - \frac{2}{b} \right| \left| p'(b) \right|$ algebraic of degree d. There exists some $\leq |z - \frac{-2}{6}| \frac{1}{(1d)} - 1$ constart CLODES such that for any Corollory- Transcendental numbers exist! $\frac{2}{6} \in \mathbb{Q}$, $\frac{2}{6} \neq \alpha$, we have $\int \alpha - \frac{2}{6} \left(\geq \frac{C(\alpha)}{h^d} \right)$. Renarks Lamma & 15 the case d=1. Proof, If we restrict Clad \$1, then we Let $\frac{b_{k}}{b_{k}} = \frac{k!}{2!} \frac{15n!}{15n'}$, so $b_{k} = 10^{k!}$. Then only have to book at a with lar 3 [5]. Let p(X) = Z[X] be irreducible of degree d d- = = I 10". Each summand is with plai=0; the plait =0 It most is the previous summonly so (since if p(=)=0 then p(x)=(6x-a)q(x)). (since to $p(\frac{1}{6}) = p(\frac{1}{6}) - p(d) = (\frac{1}{6} - \alpha)p'(d)$ Then $p(\frac{1}{6}) = p(\frac{1}{6}) - p(d) = (\frac{1}{6} - \alpha)p'(d)$ for some to botween a one of (Mean VolueTheorem). Toke C(a) = min 3.1, maxilp'thil: toba-love? We conclude from the previous lemma that $\frac{1}{10} \frac{1}{10} \frac{1}{10$

Remark. It's not hard to show that Octinition: The Forey sequence of order n the set of abjebroic numbers is countable; denoted Fr [Imsthess F-n] is the this as mother proof that transcendents! ordered sequence of reduced proper mombers exist Low are plentiful). fractions with denomihator at most n. Example: $\overline{T}_{5} = \begin{bmatrix} 0 & \frac{1}{5} & \frac{1}{4} & \frac{3}{5} & \frac{3}{2} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{4}{5} & \frac{1}{5} \end{bmatrix}$ But Contor didn't prove his stuff centil decadas ofter Liouville. Question = How to find the nelphons of Vortors improvements of the "d" in the $\frac{2}{5} \in \frac{1}{2}$? over the years .. culminating in: Proposition If BEFn, then the nast element Theorem (hoth, 1955): Lot a be algebraic of $\overline{f_n}$ is $\overline{f_n}$ where $y = -\overline{a'} \pmod{6}$ of degree di22. For any E>D, there and n-b<ysn, and X= b, exterts Clar, E) >0 such that Proof: First, zy+1 = al-a')+1=0 (mold, sx Z. $d - \frac{\Delta}{bl} \ge \frac{(ld)\epsilon}{b^{2+\epsilon}}$ And yen, to $x \in \overline{F_n}$; and $\frac{x}{y} = \frac{3y+1}{by} > \frac{2y}{by} = \frac{3}{b}$. (NOC: 16 d=2 than & isn't necessary) Now suppose that a & Fin satisfles De La Xy- Then:

bctcy = ad + dx $c(bry) = a(atx), \sqrt{}$ $\left(\frac{1}{4},\frac{7}{5}\right)+\left(\frac{3}{5},\frac{-2}{6}\right)=\frac{1}{5}$ $= bx - y = \frac{1}{yb}$, by definion of x. Corollog 3: If $\frac{2}{5} < \frac{x}{7}$ ore consecutive However, by Lemmin A M Ir, the bty 3 mil. $\begin{pmatrix} c & -2 \\ d & -2 \end{pmatrix} + \begin{pmatrix} x & -c \\ y & -d \end{pmatrix} \ge \frac{1}{bd} + \frac{1}{dy}$ $= \frac{y+b}{bdy} \ge \frac{n+1}{bdy} = \frac{1}{bdy} \frac{n+1}{by} \ge \frac{1}{bdy}$ Los else à 5 boy would be m Fn). We can reprove Dirichlets theorem using Farey sequences (,). 2 contradiction. // Corollory 1: If b < x are consecutive M Fr, then bx-zy=1. Corollong 20 If $\frac{2}{b} < \frac{2}{d} < \frac{x}{y}$ are consecutive in Fin, then $\frac{2}{d}$ equals the "Forey mediated" $\frac{\leq}{d} = \frac{20+\chi}{b+y}$ Prof: From Corollery 1, bc-sd=1 and dx-cy=1 which imply be - ad = dx - cy and sz

by Cosollosy 1; 2N Theorem (Dirichter) Let XER me nCN-There exists 2 & Q with 1665 n such that d+f = v+1 by Corollary 3, p $\left| x - \frac{\lambda}{b} \right| \leq \frac{1}{b(n+1)}$)x-2/ < dlato < dlato. Prof. Without loss of generality, XETO, 1]. Cose Z'- Suppor X3 Cte Consider Fin with the over no Then choose b = e f · If NEF, toke B=x. (essentially the some proof), - If x & F, then choose a < consentive n In with $\frac{c}{d} < x < \frac{e}{f}.$ $\frac{c}{d} < \frac{e}{f}.$ $\frac{c}{d} < \frac{e}{f}.$ $\frac{c}{d} < \frac{e}{f}.$ Check $|x - \frac{2}{b}| = x - \frac{c}{d} \le \frac{c+e}{d+f} - \frac{c}{d}$ = Sktde - of - cf = de-cf = 1 dldtf) dldtf) dldtf)