The red one behavior in the basis of the set 1 Thursday, October 10 Note: 7 $4=2401 \equiv 1 \pmod{25}$ Thursday October 10
What do we know about
Your primitive roots?
- Group Wask Tues What do we know about which moduli $18^4 \equiv C70^4 \equiv 1$ (mad 25). have primitive roots? Still, we observe! · Group Wask Tues ... Stall, we observe!
. every printive pool (mod 25) $-$ m= l_j 2 , 15 primitive root (mot 5) is well; - only other possibilities are: . most (but not old) lifts of the $p^{\mathbf{k}}$ primitive roots (mors) sue also
primitive roots (mort 25). ph, 2ph for odd primes P primitive roots Cnots 25).
- Mini-lecture The: -primes ^p ω have primitive needs f The Ingeneral. Today: look at p^k for one p. - $m = 1, 2, 4$ do have primitive ro
- only other possibilities are:
- M_i in lecture Time:
- M_i in lecture Time:
- primes p do have primitive
- $\frac{1}{2}$ for only if $\frac{1}{2}$
Some data when $p = 5$.
- The p(p(s) = 2 pr $\frac{1}{\pi}$ (p(p(s)) =2 primitive roots (mod 5) 33 . · The $H(b(253) = 8$ primitive roots (mod 25) $ose\{\frac{2}{3},\frac{3}{12},\frac{8}{13}\}\$ $3,17,22,28$ $\frac{12}{17}$
17, $\frac{1}{7}$ $D = 8$ m isolas 7 , 18

Theology of β is α primitive roof

Comp β than β is α primitive roof

Comp β than β is also α primitive of α

Contribution β is also α primitive of α

Contribution α

Then $\alpha^{k} - 1 =$ 1 Theorem: If g is > primitive root Lemme: If a has order h (mad m) L_{1} $(L_{2}$ (L_{3}), then g is also a primitive and dim, and $d|m_{0}|$ then the order of a (mode) Theorem: It g is > primitive root (sermo: It
(mod p²) then g is also o primitive and d m,
root (mod p). nost (un) p).
Starting doservation: $Suppse a^{k} \in (mod p)$. Prof: a has order h (mod m) $\frac{1}{\sqrt{2}}\left(\frac{1}{2}n\pi\right)^{2}-\frac{1}{2}\left(\frac{1}{2}n\pi\right)^{2}-\frac{1}{2}\left(\frac{1}{2}n\pi\right)^{2}-\frac{1}{2}\left(\frac{1}{2}n\pi\right)^{2}$
The $a^{k}P-1=(a^{k}-1)(4a^{k})^{k}+a^{k}P^{2}+\frac{1}{2}\pi\right)^{k}=1$ (mod m) \Rightarrow a = 1 (unod m)
=> a = 1 (mor) d) $\begin{array}{c} \n\cdot & \lambda^2 - 1 = L\lambda^{-1} \\
\cdot & \pm (L\lambda^2 + \lambda^2 + 1) \n\end{array}$ and look factors \Rightarrow h is a multiple of the order of Then $a^{k}P - 1 = (a^{k} - 1)(4a^{k})$ (a^{k}) b^{k}
... $+(a^{k})^{2} + a^{k} + 1$; and looth factors
are multiples of P_1 so $a^{k} \equiv 1$ (ma) p^{2} . α (mot d). Contropositive: if $a^{k}P \neq 1$ (mot β^{2}), then
 $a^{k} \neq 1$ (mot ρ). Proof of theorem: Suppose g is a primitive Starting deservation. Suppose
Then $a^{k}P-1=(a^{k}-1)(la^{k})$
are multiples of P_1 as a^{k}
are multiples of P_1 as a^{k}
and multiples of P_1 as a^{k}
 $a^{k} \neq 1$ (and p^{k} . Suppose a^{k}
 P_0 as a^{k} and p^{k+1 Proof of theorem: Suppose g is a primitive $\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2}$, so g has soder $\frac{1}{2}(\frac{1}{\sqrt{2}})^{2}$ = p(p).
Thus $\frac{1}{3^{2}}$, $\frac{2}{3^{3}}$, -, $\frac{1}{3}$, $\frac{1}{3^{4}}$ = 1 (mod p²). B_{1} the observation, $9.9^3 - 9^{p-2} = 1$
 B_{1} the observation, $9.9^3 - 9^{p-2} = 1$ $\overline{\mathcal{L}}$ mod p), so g 50 $\sqrt{2}$

 $\begin{array}{ll} \frac{Proposition 2}{Proposition 2} & \text{if } g \text{ is a primitive unit} \\ \frac{Proposition 2}{Proposition 2} & \text{if } g \text{ is a primitive unit} \\ \frac{1}{2}p^2(1-p^2) \neq 1 \pmod{p^2}. \quad (*) & \text{if } g \text{ is a positive unit} \\ \frac{1}{2}p^2(1-p^2) \neq 1 \pmod{p^2}. \quad (*) & \text{if } g \text{ is a positive unit} \\ \frac{1}{2}p^2(1-p^2) \neq 1 \pmod{p^2}. \quad \frac{1}{2}p^2(1-p^2) \neq 1 \pmod{p^2$ 1 position: $I = \frac{1}{2}$ Thus the order (modp^{or}) nivot be $LengthD$ with $r=2,$ then $erthv p^{r-2}(p-1)$ or $p^{r-1}(p-1)$ $g^{p-2}(p-1) \neq |$ (med p^r). (*) (no intermediate divisors since ρ is prime. Moreover, it 3 is a primitive root Moreover, it s is a primitive root. But it cont be $p^{n-2}(p-p)$ by (k) .
(mod p^{n-1}) and (dr) holds, then then $\overline{9}$ seaver, it is is a primitive root But it cont be p^{n-1} by (
is also a primitive root (mod p^{n}). Theorem Primitive roots exist $\frac{9!}{2!}$ is $\frac{1}{2!}$ of $\frac{1}{2!}$ be $\frac{1}{2!}$ (word $\frac{1}{2!}$) for every prime prime Theorem Primitive roots exist
Conor p²) for every prime p. $then$ g $\frac{1}{2}$
has order $\frac{d}{dt}$ $\left(p^2 \right) = p^{1-1} (p-1) > p^{1-2} (p-1)$ then g has add the γ (1-15 p 4 - Suppose g is p primitive root (mov) p^{r-1}) au so CAS holds (definition & arder).
- Suppose g is a primitive root (mod p^{r.)}.
and (d) holds. The order of g (mod p^r): $divides \phi(p') = p^{-1}(p-1)$ (Euler's thin) · divides $\frac{p}{p}$ if $\frac{p}{p-1}$ there: \bigcap $\begin{array}{l} \n\mathcal{P}(p+1) = p^2 \\ \n\mathcal{P}(p^2) = p^2 \\ \n\mathcal{P}(p^2) = p^2 \end{array}$

Proof: Us of the p institute of $(mod p)$.

Neill show that of the p titles and it is p in and prime,

extra θ then θ the p titles

extra of them is sprimitive root (man) p (man) p (m i 22. Then

extra of them is s 1 Proofs Let o Theorem: Let plue on oil prime, We'll show that of the p lifes our let o be o primitive root $g + tp$ (modp²) (03-24p-1), sll but $Conv2p^3$ for $r22$. Then are of them is ρ primitive root (mod ρ t) C
 C
 D is also a primitive root (mod $\rho^{(t+1)}$). By Proposition , $\#$ suffices to show $\n By Proposition, 72 with the following relation, we have to show that these functions are not always.$ Cosolbry: Let p be on ode prime. pointbe not
=2. Thes
be on edd prime. that there's a unique offer I such Any printive root (mod p²) $(9 + 1 p)^{p-1}$ $H = 1$ (mod p^2). (then) is a primitive root (mod p^k) $(94 + 4)$
Let $f(x) = x^{p-1} -$ 1. Then g is toot for every lie M. of $f(x)$ (mot p); and $f'(g) = (p-1)g$ p-2 700 cms, 150 is a nonsingular root. By Hensel's lemme, there is root By Hersel's lemme, the IS
|

Profit Theorem: Let S be $>$ primitive

rest (and p^c). By Prepartion,
 $\frac{1}{2}p^c(2p^c-1)^2$. $\frac{1}{2}p^c(2p^c-1)^2$. $\frac{1}{2}p^c(2p^c-1)^2$.
 $\frac{1}{2}p^c(2p^c-1)^2$
 $\frac{1}{2}p^c(2p^c-1)^2$
 $\frac{1}{2}p^c(2p^c-1)^2$
 $\frac{1}{$ 1 Prof + Theorem: let 3 be a primitive 9 Prof x Theorem: let g_{bc} primitive $g_{bc}^{p-1}(q-1) = (1 + np^{-1})^p$ $\frac{2np}{p} \times p_{bc}$
root (mod $p^2 - p$) By Proposition, $\frac{p}{p} = \sum_{k=p}^{p} {p \choose k} (np^{-1})^k$. $\frac{2np}{p} \times p_{bc}$ $g^{p^{n-2}(p-1)} \neq l$ (mod p^{n}); and we • When $k \ge 3$ $k(r-i) \geq r+1$ (check):
-1)^k 30 (mm) p^{r+1}). ry
2
2 $9^{p^2+q-1} \not\equiv 1$ (me)
want to show (*) $s \in (l_{k})$ n $(p^{r-1})^{u}$ so (nw) p^{r+1}). $g^{p^{-1}(p-1)} \not\equiv |$ (anot $g^{(b)}$), -
ት · W en $k=2, (2)^{n_{p}-1}$ = require $\frac{5}{6}$ that $\frac{5}{6}$ will be a primitive root (not of) P^+ PASSES And * Theoren: let g be > primitive

root (and p^r). By Proposition,
 $g^{p-2}(p-1) \neq 1$ (and p^r), and we

so that g will be > psimitive not (and p^{re)}),

so that g will be > psimitive not (and p^{re)})

Now $g^{p-1}(p-1)$ $k(r-1) \ge r+1$ (check)
 $(p^{r-1})^k \ge p$ (mod p^{r+1})
 $(k \ge p)^n$ (mod p^{r+1})
 $(k \ge p)^n$ (mod p^{r+1})
 $n^2 p^{2(r-1)} = n^{\frac{p-1}{2}} p^{2r-1}$)
 $\ge r+1$ (check). So $m²$ by Ever's thm, Uner $k=3, k=1, ..., k$

(p) $n^{k}(p^{r-1})^{k} \equiv D$ (ma)

When $k=2, (\frac{3}{2})(np^{r-1})^{2} =$
 $\sum_{r=1}^{n} (p^{r-1}p^{2}(p^{2(r-1)}) = p\frac{p-1}{2}p^{2(r-1)}$

(f) $(n_{0}^{r-1})^{2} \equiv O$ (ma) $p^{(t)}$). $\begin{array}{lll} \Sigma_{2} & \Sigma_{1} & \Sigma_{2} & \Sigma_{1} & \Sigma$ Therefore Now $g^{p-2}(p-p) \equiv ($ (nood p^{r-1}) by Eule's thing β^{P} $\frac{c}{\gamma}$ $\mathcal{U}_{(n)} = \sum_{k=p}^{n} {p \choose k} (np^{n-k})^k$ $\int_{0}^{\infty} 1^{p^{n-2}(p-1)} = 1 + np^{n-1}$ for some $\int_{0}^{\infty} 1 + p \cdot np^{n-1} = 1 + np^{n}$ \Rightarrow $\int_{0}^{\infty} 1 + p \cdot np^{n-1} = 1 + np^{n}$ \Rightarrow $\int_{0}^{\infty} 1 + p \cdot np^{n-1} = 1 + np^{n}$ \Rightarrow $\int_{0}^{\infty} 1 + p \cdot np^{n-1} = 1 + np^{n}$ \Rightarrow $\int_{0}^{\infty} 1 + p \cdot np^{n-1} =$ $p - p = 1 + np^c \nRightarrow (npq)^{(n)}$ ∞ $g^{p^{n-2}(p-1)} = 1 + np^{n-1}$ for some
 $n \neq p$ (mot p). Then by the = $1 + p \cdot np^{-1} = 1 + np^{2}$ = $\Rightarrow p$
Since $n \neq D$ (mod p). Thus (sk) holds,

Summary Principle rests exist
precisely for the 1,24 p², 2^p for structure of M_m for any *in* 2;
precisely for the 1,24 p², 2p² for structure of M_m for any *n*²2;
contribute the precise of $>$ lives p.
Exampl 1 Summary: Primitive roots exist We now know how to find the group precisely for m= 1,2 $\frac{1}{2}$ Summary: Primitive ruots exist We now know how to the g.
Dreekely for $m=1,2,4, p^k, 2p^k$ for structure of M_m for any $m=2$: od primes p. · Chinese remainder theosen - + Exercise Let please. Show that it $m = p_1^{\prime\prime}p_2^{\prime\prime} \cdots p_{\nu}^{\prime\prime}$, then Exercise Let phease. Show that if L m= p¹.

(s, 2pk), then the coder of δ (mod 2pk) Mm = p¹. $M_m \cong M_{p_1^{\rho_1}} \times M_{p_2^{\rho_2}} \times \cdots \times M_{p_{k}^{\rho_{k}}}$. In particular, since $t(2p^k) = t(2p^k)$. If p is old, then primitive roads $=$ $#(p^k)$, every primitive root (mod p^k) $exist$ (mov p^2); so $M_{pk} \cong C_{pkp^k}$) = 4(p2), every primitive root und pe Graph), then the order
equats the order of a
In posticular, since the
= 4(p²), every primit
is also a primitive rate
Grapheary formulation?
. Comptheary formulation? Group theory formulation. Let When $p=2$ $\overline{}$ $E=\int_{0}^{\infty}e^{k-1}(p-1).$ · . Cm be the cyclic group of order m La complette residue system (mot m), under + undert) $M_{jk} \in \begin{cases} C_1, & \text{if } k=1, \\ C_2, & \text{if } k=2, \\ C_{k-2} \times C_{k-1} \end{cases}$ · M_m be the "multiplicative group" (modm): $C_{2}xC_{2}$ $P E 3$ reduced residue system (modin), under x . yunne
oⁿ (modm)
under X. $(sine \notin m)$,

- 1 Lemmin: Suppose m has primitive ractis The number of solutions to this
and G , m) =1. The number of solutions like a conservence is known Lemms: Suppose in hus primitive roots
and Co,m) = 1. The number of solutions The number of solutions to this
likes congruence is known of $x^n \equiv a$ (mod m) equals
 $\leq d$, if $a^{t(m)/d} \equiv 1$ (mod m), Suppose in list primitive roots The number of solutions 7.
 m) = 1. The number of solutions likes congruence is limited theorem.
 a_3 of a other d = \ (number), from an earlier theorem. $x^n \equiv x$ (mod m) equals these can careful is known
 $\begin{array}{ccc} x^n \equiv x & \text{(mod m)} \\ y^n \equiv x & \text{(mod m)} \\ \text{(mod m)} & \text{(mod m)} \end{array}$ from an earlier theorem. 10, otherwise, S pecial σ se n ϵ_2 , map old; where $d = (n, 4/m)$. $Cosech 2$ cose: $f(n, 0) = 1$ then thes Eules coterions Suppose $p A$. always exactly 1 solution) The number of solutions of Indis exactly 1 solution.)
Prof: Let o be a primitive root (mod m), $X = 8$ (mm) $P = X$ and with $a \equiv \beta^b$ (mod m) and $X = g$ * $(mabn)$ $3\overline{}$ (1000)
 (1000)
 (1000)
 (1000) $= 1$ (modp), and write $a \equiv a^{b} \pmod{m}$ and $x = a^{b} \pmod{m}$. $\begin{cases} 2, & \text{if } a^{(p-1)/2} \equiv 1 \pmod{p} \ 0, & \text{if } a^{(p-1)/2} \equiv -1 \pmod{p} \end{cases}$ $(L\leq Y\leq t(n))$. The $\chi^4\geq G^4$ of $\chi^4\geq G^5$ (mod m) $x^{\frac{1}{2}} \geq (w\omega) \approx (8^1) = 8$
 $\Rightarrow y^{\frac{1}{2}} = 1 \quad (w\omega) \approx (8^1) = 9$ $\Rightarrow y^{\frac{1}{2}} = 0 \quad (w\omega) \approx 1$ $\Rightarrow y^{\frac{1}{2}} = 0 \quad (w\omega) \approx 1$ $\Rightarrow y^{\frac{1}{2}} = 0 \quad (w\omega) \approx 1$ $\Rightarrow y^{\frac{1}{2}} = 0 \quad (w\omega) \approx 1$ $m b = 1$ (und m) \Leftrightarrow $\frac{1}{m} b = 0$ (und $\frac{1}{m}$) \Leftrightarrow $\frac{1}{2}$ \L Fernats of $8-1/2=1$ (map).