
Math 437/537—Group Work #10
Tuesday, November 26, 2024

Definition: Let d, m0, and q0 be integers satisfying q0 | (d−m2
0), and define ξ0 = (m0 +

√
d)/q0.

The Quadratic Irrational Process produces sequences of integers as follows: for j ≥ 0, define

aj = ⌊ξj⌋, mj+1 = ajqj −mj, qj+1 =
d−m2

j+1

qj
, ξj+1 =

mj+1 +
√
d

qj+1

.

1.

(a) Carry out the Quadratic Irrational Process for d = 41, m0 = 0, q0 = 1, through j = 5.
Have we seen this sequence of aj before?

(b) Given the above sequence of aj , calculate hj and kj through j = 5. For each 0 ≤ j ≤ 5,
calculate h2

j − 41k2
j . Spot the pattern (you don’t have to prove it).

(c) Expand out (h2+k2
√
41)2 as one integer plus another integer times

√
41. Do those integers

look familiar?
(d) Given integers x, y, d, and N such that x2 − dy2 = N , define the integers xℓ and yℓ

by the identity xℓ + yℓ
√
d = (x + y

√
d)ℓ. Prove that x2

ℓ − dy2ℓ = N ℓ. Hint: consider
(x+ y

√
d)(x− y

√
d).

(e) Find integers x, y > 32 such that x2 − 41y2 = −1. Then find integers x, y > 2049 such
that x2 − 41y2 = 1. Using calculators is a good idea.

(a) We record our calculations (all of which use d = 41) in the following table:
j mj qj ξj aj

0 0 1
√
41 6

1 6 5 (6 +
√
41)/5 2

2 4 5 (4 +
√
41)/5 2

3 6 1 6 +
√
41 12

4 6 5 (6 +
√
41)/5 2

5 4 5 (4 +
√
41)/5 2

Indeed, this sequence of aj gives the continued fraction for
√
41 that we saw in today’s

class, namely the periodic continued fraction ⟨6; 2, 2, 12⟩. (Note that the table above is also
periodic, since the j = 1 and j = 4 rows are identical.)

(b) This sort of calculation is familiar to us already:
j aj hj kj h2

j − 41k2
j

−2 0 1
−1 1 0 1
0 6 6 1 −5
1 2 13 2 5
2 2 32 5 −1
3 12 397 62 5
4 2 826 129 −5
5 2 2049 320 1

By comparing the two tables above, we observe that h2
j−1 − 41k2

j−1 = (−1)jqj for j ≥ 0.



(c) We have

(h2 + k2
√
41)2 = (32 + 5

√
41)2 = 322 + 2 · 32 · 5

√
41 + 52 · 41 = 2049 + 320

√
41,

which we notice is the same as h5 + k5
√
41.

(d) The key fact we need is that xℓ and yℓ also satisfy xℓ − yℓ
√
41 = (x− y

√
41)ℓ: if we knew

that, then

x2
ℓ − 41y2ℓ = (xℓ + yℓ

√
41)(xℓ − yℓ

√
41) = (x+ y

√
41)ℓ(x− y

√
41)ℓ

= ((x+ y
√
41)(x− y

√
41))ℓ = (x2 + dy2)ℓ = N ℓ.

There are (at least) three ways to prove that xℓ − yℓ
√
41 = (x− y

√
41)ℓ:

Proof 1: We have

xℓ + yℓ
√
41 = (x+ y

√
41)ℓ

=
ℓ∑

i=0

(
ℓ

i

)
(y
√
41)ixℓ−i

=
∑
0≤i≤ℓ
i even

(
ℓ

i

)
(y
√
41)ixℓ−i +

∑
0≤i≤ℓ
i even

(
ℓ

i

)
(y
√
41)ixℓ−i

=
∑
0≤i≤ℓ
i even

(
ℓ

i

)
yi41i/2xℓ−i +

√
41

∑
0≤i≤ℓ
i even

(
ℓ

i

)
yi41(ℓ−1)/2xℓ−i;

since both sums are manifestly integers, the first sum equals xℓ and the second equals yℓ
(otherwise

√
41 would be rational). On the other hand,

(x− y
√
41)ℓ =

ℓ∑
i=0

(
ℓ

i

)
(−y

√
41)ixℓ−i

=
∑
0≤i≤ℓ
i even

(
ℓ

i

)
(−y

√
41)ixℓ−i +

∑
0≤i≤ℓ
i even

(
ℓ

i

)
(−y

√
41)ixℓ−i

=
∑
0≤i≤ℓ
i even

(
ℓ

i

)
yi41i/2xℓ−i −

√
41

∑
0≤i≤ℓ
i even

(
ℓ

i

)
yi41(ℓ−1)/2xℓ−i

= xℓ − yℓ
√
41,

since the two resulting sums are exactly the same as before.
Proof 2: We proceed by induction on ℓ; the base case is trivial because x1 = x and y1 = y.

Note that

xℓ+1 + yℓ+1

√
41 = (x+ y

√
41)ℓ+1 = (x+ y

√
41)ℓ(x− y

√
41) = (xℓ + yℓ

√
41)(x+ y

√
41)

= (xℓx+ 41yℓy) + (xℓy + yℓx)
√
41,



and so xℓ+1 = xℓx + 41yℓy and yℓ+1 = xℓy + yℓx. On the other hand, under the
induction hypothesis that xℓ − yℓ

√
41 = (x− y

√
41)ℓ, we have

(x− y
√
41)ℓ+1 = (x− y

√
41)ℓ(x− y

√
41) = (xℓ − yℓ

√
41)(x− y

√
41)

= (xℓx+ 41yℓy)− (xℓy + yℓx)
√
41 = xℓ+1 − yℓ+1

√
41

as desired.
Proof 3: Let f(t) ∈ Q[t] be irreducible, and let α and β be any two roots of f . Then Galois

theory tells us that there exists a field isomorphism from Q(α) to Q(β) that sends α

to β. In particular, if g(t) ∈ Q[t] is any polynomial, so that g(α) =
∑I

i=0 riα
i for

some rational numbers ri, then g(β) =
∑I

i=0 riβ
i for the same rational numbers. Our

desired identity is the special case where f(t) = t2 − 41, α =
√
41, β = −

√
41, and

g(t) = (x+ yt)ℓ.
(e) We define x = 32 and y = 5, so that x2 − 41y2 = −1. By part (d), if we define xℓ and yℓ

by xℓ + yℓ
√
41 = (x+ y

√
41)ℓ, we then have x2

ℓ − 41y2ℓ = (−1)ℓ. Indeed, we saw the case
ℓ = 2 in part (c). Taking ℓ = 3 and ℓ = 4:

(32 + 5
√
41)3 = 323 + 3 · 322 · 5

√
41 + 3 · 32 · (5

√
41)2 + (5

√
41)3

= 32768 + 15360
√
41 + 98400 + 5125

√
41

= 131168 + 20485
√
41

(32 + 5
√
41)4 = 324 + 4 · 323 · 5

√
41 + 6 · 322 · (5

√
41)2 + 4 · 32 · (5

√
41)3 + (5

√
41)4

= 1050625 + 656000
√
41 + 6297600 + 655360

√
41 + 1048576

= 8396801 + 1311360
√
41;

and indeed 1311682 − 41 · 204852 = −1 and 83968012 − 41 · 13113602 = 1.

(continued on next page)



2.

(a) Carry out the Quadratic Irrational Process for d = 28, m0 = 0, q0 = 1, through j = 7.
(b) Given the above sequence of aj , calculate hj and kj through j = 3. For each 0 ≤ j ≤ 3,

calculate h2
j − 28k2

j .
(c) Can you quickly calculate h7, k7, and h2

7 − 28k2
7?

(a) We record our calculations (all of which use d = 28) in the following table:
j mj qj ξj aj

0 0 1
√
28 5

1 5 3 (5 +
√
28)/3 3

2 4 4 (4 +
√
28)/4 2

3 4 3 (4 +
√
28)/3 3

4 5 1 5 +
√
28 10

5 5 3 (5 +
√
28)/3 3

6 4 4 (4 +
√
28)/4 2

7 4 3 (4 +
√
28)/3 3

Indeed, this table is also periodic, since the j = 1 and j = 5 rows are identical; it seems
that

√
28 has the periodic continued fraction ⟨5; 3, 2, 3, 10⟩.

(b) Again this is a familiar calculation:
j aj hj kj h2

j − 28k2
j

−2 0 1
−1 1 0 1
0 5 5 1 −3
1 3 16 3 4
2 2 37 7 −3
3 3 127 24 1

(c) It should seem, from our observations in problem #1, that we should have the identity
h7 + k7

√
28 = (h3 + k3

√
28)2; so we calculate

(h3 + k3
√
28)2 = (127 + 24

√
28)2 = 1272 + 2 · 127 · 24

√
28 + 242 · 28 = 32257 + 6096

√
28,

so that h7 = 32257 and k7 = 6096. (And indeed, we verify that 322572 − 28 · 60962 = 1.)


