Math 437/537—Group Work #10

Tuesday, November 26, 2024

Definition: Let d, m_0 , and q_0 be integers satisfying $q_0 \mid (d - m_0^2)$, and define $\xi_0 = (m_0 + \sqrt{d})/q_0$. The *Quadratic Irrational Process* produces sequences of integers as follows: for $j \ge 0$, define

$$a_j = \lfloor \xi_j \rfloor, \ m_{j+1} = a_j q_j - m_j, \ q_{j+1} = \frac{d - m_{j+1}^2}{q_j}, \ \xi_{j+1} = \frac{m_{j+1} + \sqrt{d}}{q_{j+1}}.$$

1.

- (a) Carry out the Quadratic Irrational Process for d = 41, $m_0 = 0$, $q_0 = 1$, through j = 5. Have we seen this sequence of a_j before?
- (b) Given the above sequence of a_j , calculate h_j and k_j through j = 5. For each $0 \le j \le 5$, calculate $h_j^2 41k_j^2$. Spot the pattern (you don't have to prove it).
- (c) Expand out $(h_2+k_2\sqrt{41})^2$ as one integer plus another integer times $\sqrt{41}$. Do those integers look familiar?
- (d) Given integers x, y, d, and N such that $x^2 dy^2 = N$, define the integers x_ℓ and y_ℓ by the identity $x_\ell + y_\ell \sqrt{d} = (x + y\sqrt{d})^\ell$. Prove that $x_\ell^2 - dy_\ell^2 = N^\ell$. Hint: consider $(x + y\sqrt{d})(x - y\sqrt{d})$.
- (e) Find integers x, y > 32 such that $x^2 41y^2 = -1$. Then find integers x, y > 2049 such that $x^2 41y^2 = 1$. Using calculators is a good idea.
- (a) We record our calculations (all of which use d = 41) in the following table:

j	$\mid m_{j}$	q_j	ξ_j	a_j
0	0	1	$\sqrt{41}$	6
1	6	5	$(6 + \sqrt{41})/5$	2
2	4	5	$(4 + \sqrt{41})/5$	2
3	6	1	$6 + \sqrt{41}$	12
4	6	5	$(6 + \sqrt{41})/5$	2
5	4	5	$(4+\sqrt{41})/5$	2

Indeed, this sequence of a_j gives the continued fraction for $\sqrt{41}$ that we saw in today's class, namely the periodic continued fraction $\langle 6; \overline{2, 2, 12} \rangle$. (Note that the table above is also periodic, since the j = 1 and j = 4 rows are identical.)

(b) This sort of calculation is familiar to us already:

j	a_j	h_j	k_j	$h_{j}^{2} - 41k_{j}^{2}$
-2		0	1	
-1		1	0	1
0	6	6	1	-5
1	2	13	2	5
$\frac{2}{3}$	2	32	$\begin{array}{c} 2\\ 5\end{array}$	-1
3	12	397	62	5
4	2	826	129	-5
5	2	2049	320	1

By comparing the two tables above, we observe that $h_{j-1}^2 - 41k_{j-1}^2 = (-1)^j q_j$ for $j \ge 0$.

(c) We have

$$(h_2 + k_2\sqrt{41})^2 = (32 + 5\sqrt{41})^2 = 32^2 + 2 \cdot 32 \cdot 5\sqrt{41} + 5^2 \cdot 41 = 2049 + 320\sqrt{41},$$

which we notice is the same as $h_5 + k_5\sqrt{41}$.

(d) The key fact we need is that x_{ℓ} and y_{ℓ} also satisfy $x_{\ell} - y_{\ell}\sqrt{41} = (x - y\sqrt{41})^{\ell}$: if we knew that, then

$$\begin{aligned} x_{\ell}^2 - 41y_{\ell}^2 &= (x_{\ell} + y_{\ell}\sqrt{41})(x_{\ell} - y_{\ell}\sqrt{41}) = (x + y\sqrt{41})^{\ell}(x - y\sqrt{41})^{\ell} \\ &= ((x + y\sqrt{41})(x - y\sqrt{41}))^{\ell} = (x^2 + dy^2)^{\ell} = N^{\ell}. \end{aligned}$$

There are (at least) three ways to prove that $x_{\ell} - y_{\ell}\sqrt{41} = (x - y\sqrt{41})^{\ell}$: *Proof 1*: We have

$$\begin{split} x_{\ell} + y_{\ell} \sqrt{41} &= (x + y\sqrt{41})^{\ell} \\ &= \sum_{i=0}^{\ell} \binom{\ell}{i} (y\sqrt{41})^{i} x^{\ell-i} \\ &= \sum_{\substack{0 \le i \le \ell \\ i \text{ even}}} \binom{\ell}{i} (y\sqrt{41})^{i} x^{\ell-i} + \sum_{\substack{0 \le i \le \ell \\ i \text{ even}}} \binom{\ell}{i} (y\sqrt{41})^{i} x^{\ell-i} \\ &= \sum_{\substack{0 \le i \le \ell \\ i \text{ even}}} \binom{\ell}{i} y^{i} 41^{i/2} x^{\ell-i} + \sqrt{41} \sum_{\substack{0 \le i \le \ell \\ i \text{ even}}} \binom{\ell}{i} y^{i} 41^{(\ell-1)/2} x^{\ell-i}; \end{split}$$

since both sums are manifestly integers, the first sum equals x_{ℓ} and the second equals y_{ℓ} (otherwise $\sqrt{41}$ would be rational). On the other hand,

$$\begin{aligned} (x - y\sqrt{41})^{\ell} &= \sum_{i=0}^{\ell} \binom{\ell}{i} (-y\sqrt{41})^{i} x^{\ell-i} \\ &= \sum_{\substack{0 \le i \le \ell \\ i \text{ even}}} \binom{\ell}{i} (-y\sqrt{41})^{i} x^{\ell-i} + \sum_{\substack{0 \le i \le \ell \\ i \text{ even}}} \binom{\ell}{i} (-y\sqrt{41})^{i} x^{\ell-i} \\ &= \sum_{\substack{0 \le i \le \ell \\ i \text{ even}}} \binom{\ell}{i} y^{i} 41^{i/2} x^{\ell-i} - \sqrt{41} \sum_{\substack{0 \le i \le \ell \\ i \text{ even}}} \binom{\ell}{i} y^{i} 41^{(\ell-1)/2} x^{\ell-i} \\ &= x_{\ell} - y_{\ell} \sqrt{41}, \end{aligned}$$

since the two resulting sums are exactly the same as before.

Proof 2: We proceed by induction on ℓ ; the base case is trivial because $x_1 = x$ and $y_1 = y$. Note that

$$\begin{aligned} x_{\ell+1} + y_{\ell+1}\sqrt{41} &= (x + y\sqrt{41})^{\ell+1} = (x + y\sqrt{41})^{\ell}(x - y\sqrt{41}) = (x_{\ell} + y_{\ell}\sqrt{41})(x + y\sqrt{41}) \\ &= (x_{\ell}x + 41y_{\ell}y) + (x_{\ell}y + y_{\ell}x)\sqrt{41}, \end{aligned}$$

and so $x_{\ell+1} = x_{\ell}x + 41y_{\ell}y$ and $y_{\ell+1} = x_{\ell}y + y_{\ell}x$. On the other hand, under the induction hypothesis that $x_{\ell} - y_{\ell}\sqrt{41} = (x - y\sqrt{41})^{\ell}$, we have

$$(x - y\sqrt{41})^{\ell+1} = (x - y\sqrt{41})^{\ell}(x - y\sqrt{41}) = (x_{\ell} - y_{\ell}\sqrt{41})(x - y\sqrt{41})$$
$$= (x_{\ell}x + 41y_{\ell}y) - (x_{\ell}y + y_{\ell}x)\sqrt{41} = x_{\ell+1} - y_{\ell+1}\sqrt{41}$$

as desired.

Proof 3: Let $f(t) \in \mathbb{Q}[t]$ be irreducible, and let α and β be any two roots of f. Then Galois theory tells us that there exists a field isomorphism from $\mathbb{Q}(\alpha)$ to $\mathbb{Q}(\beta)$ that sends α to β . In particular, if $g(t) \in \mathbb{Q}[t]$ is any polynomial, so that $g(\alpha) = \sum_{i=0}^{I} r_i \alpha^i$ for some rational numbers r_i , then $g(\beta) = \sum_{i=0}^{I} r_i \beta^i$ for the same rational numbers. Our desired identity is the special case where $f(t) = t^2 - 41$, $\alpha = \sqrt{41}$, $\beta = -\sqrt{41}$, and $q(t) = (x + yt)^{\ell}$.

(e) We define x = 32 and y = 5, so that $x^2 - 41y^2 = -1$. By part (d), if we define x_ℓ and y_ℓ by $x_\ell + y_\ell \sqrt{41} = (x + y\sqrt{41})^\ell$, we then have $x_\ell^2 - 41y_\ell^2 = (-1)^\ell$. Indeed, we saw the case $\ell = 2$ in part (c). Taking $\ell = 3$ and $\ell = 4$:

$$(32 + 5\sqrt{41})^3 = 32^3 + 3 \cdot 32^2 \cdot 5\sqrt{41} + 3 \cdot 32 \cdot (5\sqrt{41})^2 + (5\sqrt{41})^3$$

= 32768 + 15360\sqrt{41} + 98400 + 5125\sqrt{41}
= 131168 + 20485\sqrt{41}
(32 + 5\sqrt{41})^4 = 32^4 + 4 \cdot 32^3 \cdot 5\sqrt{41} + 6 \cdot 32^2 \cdot (5\sqrt{41})^2 + 4 \cdot 32 \cdot (5\sqrt{41})^3 + (5\sqrt{41})^4
= 1050625 + 656000\sqrt{41} + 6297600 + 655360\sqrt{41} + 1048576
= 8396801 + 1311360\sqrt{41};

and indeed $131168^2 - 41 \cdot 20485^2 = -1$ and $8396801^2 - 41 \cdot 1311360^2 = 1$.

2.

- (a) Carry out the Quadratic Irrational Process for d = 28, $m_0 = 0$, $q_0 = 1$, through j = 7.
- (b) Given the above sequence of a_j , calculate h_j and k_j through j = 3. For each $0 \le j \le 3$, calculate $h_j^2 28k_j^2$.
- (c) Can you quickly calculate h_7 , k_7 , and $h_7^2 28k_7^2$?
- (a) We record our calculations (all of which use d = 28) in the following table:

Ĵ	i	$\mid m_j$	q_j	ξ_j	a_j
()	0	1	$\sqrt{28}$	5
]	L	5	3	$(5+\sqrt{28})/3$	3
4	2	4	4	$(4+\sqrt{28})/4$	2
ę	3	4	3	$(4+\sqrt{28})/3$	3
4	1	5	1	$5 + \sqrt{28}$	10
L.	5	5	3	$(5+\sqrt{28})/3$	3
(3	4	4	$(4+\sqrt{28})/4$	2
7	7	4	3	$(4+\sqrt{28})/3$	3

Indeed, this table is also periodic, since the j = 1 and j = 5 rows are identical; it seems that $\sqrt{28}$ has the periodic continued fraction $\langle 5; \overline{3, 2, 3, 10} \rangle$.

(b) Again this is a familiar calculation:

j	a_j	h_j	k_{j}	$h_j^2 - 28k_j^2$
-2		0	1	
-1		1	0	1
0	5	5	1	-3
1	3	16	3	4
2	2	37	7	-3
3	3	127	24	1
		' .		

- (c) It should seem, from our observations in problem #1, that we should have the identity $h_7 + k_7\sqrt{28} = (h_3 + k_3\sqrt{28})^2$; so we calculate
- $(h_3 + k_3\sqrt{28})^2 = (127 + 24\sqrt{28})^2 = 127^2 + 2 \cdot 127 \cdot 24\sqrt{28} + 24^2 \cdot 28 = 32257 + 6096\sqrt{28},$ so that $h_7 = 32257$ and $k_7 = 6096$. (And indeed, we verify that $32257^2 - 28 \cdot 6096^2 = 1$.)