
Math 437/537—Group Work #1—Solutions
Tuesday, September 17, 2024

There are a few subsidiary facts that follow from the axioms and that prove useful when solving
these problems; we gather those subsidiary facts here.

• Notice that if we take a = 0 in Axiom 15, we get the statement “for all b, c ∈ Z, if 0 < b
and 0 < c, then 0 < bc” (since 0c = 0 by Axiom 10). In other words, the product of two
positive integers is again positive. Similarly, if we take b = 0 in Axiom 15, we get the
statement “for all a, c ∈ Z, if a < 0 and 0 < c, then ac < 0”; in other words, the product
of a positive integer and a negative integer is negative.

• Notice also that Axiom 15 contains strict inequalities. However, the variant of Axiom
15 with nonstrict inequalities—namely, “for all a, b, c ∈ Z, if a ≤ b and 0 ≤ c, then
ac ≤ bc”—is also true. It follows from the given Axiom 15 by just checking the new
possibilities a = b (multiplication is well-defined) or c = 0 (Axiom 10).

• Finally, let −1 be the additive inverse (in the sense of Axiom 5) of 1. Note that for any
integer b,

0 = 0b = (1 + (−1))b = 1b+ (−1)b = b+ (−1)b,

where the equalities follow from Axioms 10, 5, 11, and 9, respectively. Adding −b to both
sides, where −b denotes the additive inverse of b, gives

−b = (−b) + 0 = (−b) +
(
b+ (−1)b

)
=

(
(−b) + b

)
+ (−1)b = 0 + (−1)b = (−1)b,

where the equalities follow from Axioms 4, 1, 2, 5, and 4. In other words, we have shown
that −b = (−1)b; that is, additive inverses are unique and can be obtained by multiplying
by the special number −1.

1. If a and b are positive integers with a | b, show that a ≤ b. You may assume, for the moment,
that there is no integer between 0 and 1.

Since a | b, there exists an integer m such that am = b. Note that both a and am = b are positive
by assumption; in particular, m cannot be negative, since then b would be negative (by the first
subsidiary fact above), and Axiom 12 says that an integer cannot be both positive and negative.
Similarly, if m = 0 then b = am = a0 = 0 by Axiom 10, again contradicting Axiom 12 since b is
known to be positive. Since m < 0 and m = 0 are both impossible, we conclude from Axiom 12
that m > 0.
Knowing that m > 0, we use the assumption that there is no integer between 0 and 1 to conclude
that m ≥ 1. Multiplying both sides by a yields b = am ≥ a, by the nonstrict variant of Axiom 15
discussed above.

2. Prove that there is no integer between 0 and 1. You may assume, for the moment, that 1 > 0.

Suppose, for the sake of contradiction, that there exists an integer s with 0 < s < 1 (where we
have used the assumption that 0 < 1). There are two related ways to use Axiom 16 (well-ordering)
to derive a contradiction:

(a) Consider the infinite set S = {s, s2, s3, · · · } of integers; all of these integers are positive,
by repeated use of the first subsidiary fact above. By Axiom 16, S has a least element, say



sk. But multiplying the inequality s < 1 by the positive integer sk yields sk+1 < sk (using
Axiom 9 for the right-hand side), which contradicts the fact that sk is the smallest element
of S.

(b) Alternatively, consider the set E of positive integers less than 1. Suppose, for the sake of
contradiction, that E is nonempty. Then E possesses a least element e by Axiom 16. But
multiplying the inequalities 0 < e < 1 by the positive integer e yields 0 < e2 < e (using
our positive-times-positive-equals-positive fact for the left-hand side and Axiom 15 for the
left-hand side), which shows that e2 ∈ E and thus contradicts the fact that e is the smallest
element of E.

3. Prove that 1 > 0.

By Axiom 12, exactly one of the three statements 0 < 1, 0 = 1, and 0 > 1 is true; but it can’t
be 0 = 1 by Axiom 9. So all we have to do is prove that 0 > 1 is impossible. Suppose, for the
sake of contradiction, that 0 > 1. Let −1 denote an additive inverse of 1; applying Axiom 14 to
0 > 1 yields 0 + (−1) > 1 + (−1), or −1 > 0 by Axiom 4 and Axiom 5. Then (−1)(−1) > 0 by
Axiom 15. But (−1)(−1) = 1 by the third subsidiary fact discussed above, and so 1 > 0, which is
a contradiction to our assumption that 0 > 1.
(A related approach is to use the axioms to show that for any nonzero integer a, exactly one of a
and −a is positive. One can then show that a2 is positive for any nonzero integer a. Finally, given
the existence of a positive integer b, multiplying the inequality 0 < b by 1 gives 0 < b—which
rules out the possibility that 1 is negative, by the first subsidiary fact above.)



The Axioms for the Integers

The following are the axioms of Z. They relate to the addition, multiplication and
the order relation (<) in Z.

Axiom 1 (AE). If a, b ∈ Z, then the sum a+ b is uniquely defined element in Z.

Axiom 2 (AA). For all a, b, c ∈ Z we have a + (b+ c) = (a + b) + c.

Axiom 3 (AC). For all a, b ∈ Z we have a + b = b+ a.

Axiom 4 (AZ). There is an element 0 in Z such that 0+ a = a+0 = a for all a ∈ Z.

Axiom 5 (AO). If a is an element of Z, then the equation a + x = 0 has a solution
−a ∈ Z.

Axiom 6 (ME). If a, b ∈ Z, then the product a ·b (usually denoted by ab) is uniquely
defined element in Z.

Axiom 7 (MA). For all a, b, c ∈ Z we have a(bc) = (ab)c.

Axiom 8 (MC). For all a, b ∈ Z we have ab = ba.

Axiom 9 (MO). There is an element 1 in Z such that 1 ̸= 0 and 1 · a = a · 1 = a for
all a ∈ Z.

Axiom 10 (MZ). For all a, b ∈ Z, ab = 0 if and only if a = 0 or b = 0.

Axiom 11 (DL). For all a, b, c ∈ Z we have a(b+ c) = ab+ ac.

Axiom 12 (OE). If a, b ∈ Z, then exactly one of the following three statements is
true: a < b or a = b, or b < a.

Axiom 13 (OT). For all a, b, c ∈ Z, if a < b and b < c, then a < c.

Axiom 14 (OA). For all a, b, c ∈ Z, if a < b, then a + c < b+ c.

Axiom 15 (OM). For all a, b, c ∈ Z, if a < b and 0 < c, then ac < bc.

Axiom 16 (WO). If S is a nonempty set of positive integers, then there exists m ∈ S

such that m ≤ x for all x ∈ S.

Explanation of abbreviations: AE - addition exists, AA - addition is associative,
AC - addition is commutative, AZ - addition has zero, AO - addition has opposites,
ME - multiplication exists, MA - multiplication is associative, MC - multiplication is
commutative, MO - multiplication has one, MZ - multiplication respects zero, DL -
distributive law, OE - order exists, OT - order is transitive, OA - order respects
addition, OM - order respects multiplication, WO - this is so called the well ordering
axiom.


