
Math 437/537—Group Work #2
Tuesday, September 24, 2024

1. Two moduli:

(a) Find an integer that is congruent to 0 (mod 13) and also congruent to 1 (mod 23).
(b) Find an integer that is congruent to 0 (mod 23) and also congruent to 1 (mod 13).
(c) Given two integers a1 and a2, find a formula for an integer that is congruent to a1 (mod 13)

and also congruent to a2 (mod 23). (Hint: use your answers to (a) and (b).)
(d) Why is there no integer that is congruent to 2 (mod 15) and also congruent to 3 (mod 25)?

What could you change about the 2 and 3 so that there is such an integer?

(a) Such an integer must be of the form 13x; we want to choose x so that 13x ≡ 1 (mod 23).
The extended Euclidean algorithm gives us the Bézout identity 4 ·23−7 ·13 = 1; reducing
modulo 23 yields −7 · 13 ≡ 1 (mod 23). Therefore one such integer is −7 · 13 = −91.

(b) On the other hand, reducing 4 ·23−7 ·13 = 1 modulo 13 yields 4 ·23 ≡ 1 (mod 13). Since
clearly 4 · 23 is congruent to 0 modulo 23, one such integer is 4 · 23 = 92.

(c) Since −91 ≡ 0 (mod 13) and 92 ≡ 1 (mod 13), we see that −91a2 + 92a1 ≡ 0a2 +
1a1 = a1 (mod 13). Similarly, since −91 ≡ 1 (mod 23) and 92 ≡ 0 (mod 23), we see that
−91a2 + 92a1 ≡ 1a2 + 0a1 = a2 (mod 13). Therefore −91a2 + 92a1 is a formula with the
desired properties.

(d) Since 5 | 15, the congruence n ≡ 2 (mod 15) implies the weaker congruence n ≡ 2 (mod 5).
Similarly, n ≡ 3 (mod 25) implies n ≡ 3 (mod 5). But 2 ̸= 3 (mod 5), so no integer n can
simultaneously satisfy n ≡ 2 (mod 5) and n ≡ 3 (mod 5). This problem would go away
if we changed the 2 and 3 to integers that were congruent modulo 5, such as 2 and 7. (It’s
not immediately clear whether this is the only problem—for example, whether the con-
gruences n ≡ 2 (mod 15) and n ≡ 7 (mod 25) must have a simultaneous solution. We’ll
return to this point later in the course.)
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2. Three moduli:

(a) Find an integer that is congruent to 1 (mod 5), congruent to 0 (mod 7), and congruent to
0 (mod 9).

(b) Find an integer that is congruent to 0 (mod 5), congruent to 1 (mod 7), and congruent to
0 (mod 9).

(c) Find an integer that is congruent to 0 (mod 5), congruent to 0 (mod 7), and congruent to
1 (mod 9).

(d) What is the smallest positive integer that leaves a remainder of 3 when divided by 5, leaves
a remainder of 2 when divided by 7, and leaves a remainder of 1 when divided by 9?

(e) Why must every integer satisfying the three conditions in part (d) be congruent, modulo
5 · 7 · 9, to your answer to part (d)?

(a) Such an integer must be of the form 7 · 9 · x (since (7, 9) = 1, any multiple of both 7 and 9
must also be a multiple of 7 · 9); we want to choose x so that 63x ≡ 1 (mod 5)—that is, we
want x to be the multiplicative inverse of 63 modulo 5. The extended Euclidean algorithm,
or inspection, gives x ≡ 2 (mod 5), and so 63 · 2 = 126 is a solution.

(b) Similarly, we need an integer 5 · 9 ·x where x ≡ (5 · 9)−1 (mod 7); a calculation shows that
x = 5 works, so that 5 · 9 · 5 = 225 is a solution.

(c) Since (5 · 7)−1 ≡ 8 (mod 9), the integer 5 · 7 · 8 = 280 is a solution.
(d) Given our answers to parts (a)–(c), the linear combination 3 ·126+2 ·225+1 ·280 = 1108

is one such integer. However, we may subtract 5 · 7 · 9 = 315 without changing any of the
congruences modulo 5, 7, or 9; subtracting 315 three times yields 1108− 3 · 315 = 163 as
the smallest such integer. (Part (e) below justifies why it is the smallest one.)

(e) Suppose n1 and n2 are two integers satisfying the simultaneous congruences n ≡ 3 (mod 5),
n ≡ 2 (mod 7), and n ≡ 1 (mod 9). Then n1−n2 ≡ 3−3 = 0 (mod 5), so that 5 | (n1−n2).
By the same argument, 7 | (n1 − n2); since (5, 7) = 1, we conclude that 5 · 7 | (n1 − n2).
Similarly, 9 | (n1 − n2) and (9, 5 · 7) = 1, and so 5 · 7 · 9 | (n1 − n2), which is to say
n1 ≡ n2 (mod 5 · 7 · 9).
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3. Given moduli m1,m2, . . . ,mk and integers a1, a2, . . . , ak, write down a formula for an integer
that is congruent to aj (mod mj) for each 1 ≤ j ≤ k. What hypothesis (if any) is necessary on the
moduli m1,m2, . . . ,mk? on the integers a1, a2, . . . , ak?

The answer is known as the Chinese remainder theorem: Let m1,m2, . . . ,mk be nonzero integers
such that (mi,mj) = 1 for all 1 ≤ i < j ≤ k, and let a1, a2, . . . , ak be any integers. Then the
integers satisfying the simultaneous congruences

n ≡ a1 (mod m1)
n ≡ a2 (mod m2)

...
n ≡ ak (mod mk)

consist of a single residue class modulo m1m2 · · ·mk. One such integer is given by the formula

n = b1M1a1 + · · ·+ bkMkak, (1)

where Mj = m1 · · ·mj−1mj+1 · · ·mk is the product of all of the mi except for mj , and bj ≡
M−1

j (mod mj).
Note that for k ≥ 3, there is a difference between the mk being pairwise coprime—meaning that
(mi,mj) = 1 for all 1 ≤ i < j ≤ k—and the k-tuple (m1, . . . ,mk) having greatest common
divisor equal to 1; the former condition implies the latter condition, but not conversely as the triple
(6, 10, 15) shows. EXERCISE: Verify that the proof of the Chinese remainder theorem requires the
stronger condition of pairwise coprimality.
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Notation: Let Zm = Z/mZ be the set of all residue classes modulo m, and let Z×
m = (Z/mZ)×

be the set of reduced residue classes modulo m.
Structural comments (with a payoff at the end): Whenever d | m, there is a well-defined projec-
tion map πd : Zm → Zd given by πd(a mod m) = a mod d. (EXERCISE: Verify that this map is
not well-defined when d ∤ m. For example, it doesn’t make sense to talk about whether elements
of Z7 are even or odd.) Now, let m1,m2, . . . ,mr be pairwise coprime. The map between sets

π : Zm1m2···mr −→ Zm1 × Zm2 × · · · × Zmr ,

is given in each component Zmi
by πmi

. The Chinese remainder theorem gives a map

ρ : Zm1 × Zm2 × · · · × Zmr −→ Zm1m2···mr ,

given by the formula in equation (1); the statement of the theorem is equivalent to saying that π ◦ ρ
is the identity map. Since both sets are finite, we conclude that π and ρ are set bijections.
One can check (EXERCISE) that π and ρ respect addition and multiplication (indeed, that was part
of how we deduced general formulas such as 1(c) and 2(d) from specific cases such as 1(a)–(b) and
2(a)–(c). In other words, π and ρ are ring isomorphisms.
Moreover, one can check (EXERCISE) that π and ρ respect coprimality: an element a ∈ Zm1m2···mr

is coprime to m1 · · ·mr if and only if the jth coordinate of π(a) is coprime to mj for each 1 ≤ j ≤
r. In other words, π and ρ induce isomorphisms of multiplicative groups

π× : (Zm1m2···mr)
× −→ Z×

m1
× Z×

m2
× · · · × Z×

mr

ρ× : Z×
m1

× Z×
m2

× · · · × Z×
mr

−→ (Zm1m2···mr)
×.

In particular, these maps are set bijections; since ϕ(n) is, by definition, the cardinality of Z×
n , we

conclude that the Euler phi-function is multiplicative, meaning that

ϕ(m1m2 · · ·mr) = ϕ(m1)ϕ(m2) · · ·ϕ(mr) whenever m1, . . . ,mr are pairwise coprime. (2)

One important special case of all this is when n is factored (uniquely, by the fundamental theorem
of arithmetic) into a product of powers of distinct primes,

n = pα1
1 pα2

2 · · · pαr
r

with αi > 0 and pi ̸= pj for all i ̸= j; verify that pα1
1 , . . . , pαr

r are indeed pairwise coprime.
We are thus motivated to compute ϕ(pα) for prime p; but the only integers 1 ≤ k ≤ pα with
(pα, k) > 1 must have (pα, k) = pβ for some 1 ≤ β ≤ α, and in particular must be multiples of p.
We deduce that the integers in the range 1 ≤ k ≤ pα that are not coprime to pα are precisely the
pα−1 multiples of p in that range; consequently, ϕ(pα) = pα − pα−1 = pα(1− 1

p
).

Consequently, we may write down a formula for ϕ(n), for any integer n, in terms of its prime
factorization, thanks to the multiplicative property (2):

ϕ
(
pα1
1 pα2

2 · · · pαr
r

)
=

(
pα1
1 − pα1−1

1

)
· · ·

(
pαr
r − pαr−1

r

)
=

r∏
j=1

p
αj

j

(
1− 1

pj

)
,

or equivalently

ϕ(n) = n
∏
p|n

(
1− 1

p

)
,

where the product runs over all (distinct) prime divisors p of n.


