Math 437/537—Group Work #2

Tuesday, September 24, 2024

1. Two moduli:

- (a) *Find an integer that is congruent to* 0 (mod 13) *and also congruent to* 1 (mod 23)*.*
- (b) *Find an integer that is congruent to* 0 (mod 23) *and also congruent to* 1 (mod 13)*.*
- (c) *Given two integers* a_1 *and* a_2 *, find a formula for an integer that is congruent to* a_1 (mod 13) and also congruent to a_2 (mod 23). (Hint: use your answers to (a) and (b).)
- (d) *Why is there no integer that is congruent to* 2 (mod 15) *and also congruent to* 3 (mod 25)*? What could you change about the* 2 *and* 3 *so that there is such an integer?*
- (a) Such an integer must be of the form 13x; we want to choose x so that $13x \equiv 1 \pmod{23}$. The extended Euclidean algorithm gives us the Bézout identity $4 \cdot 23 - 7 \cdot 13 = 1$; reducing modulo 23 yields $-7 \cdot 13 \equiv 1 \pmod{23}$. Therefore one such integer is $-7 \cdot 13 = -91$.
- (b) On the other hand, reducing $4 \cdot 23 7 \cdot 13 = 1$ modulo 13 yields $4 \cdot 23 \equiv 1 \pmod{13}$. Since clearly $4 \cdot 23$ is congruent to 0 modulo 23, one such integer is $4 \cdot 23 = 92$.
- (c) Since $-91 \equiv 0 \pmod{13}$ and $92 \equiv 1 \pmod{13}$, we see that $-91a_2 + 92a_1 \equiv 0a_2 + 1$ $1a_1 = a_1 \pmod{13}$. Similarly, since $-91 \equiv 1 \pmod{23}$ and $92 \equiv 0 \pmod{23}$, we see that $-91a_2 + 92a_1 \equiv 1a_2 + 0a_1 = a_2 \pmod{13}$. Therefore $-91a_2 + 92a_1$ is a formula with the desired properties.
- (d) Since 5 | 15, the congruence $n \equiv 2 \pmod{15}$ implies the weaker congruence $n \equiv 2 \pmod{5}$. Similarly, $n \equiv 3 \pmod{25}$ implies $n \equiv 3 \pmod{5}$. But $2 \neq 3 \pmod{5}$, so no integer n can simultaneously satisfy $n \equiv 2 \pmod{5}$ and $n \equiv 3 \pmod{5}$. This problem would go away if we changed the 2 and 3 to integers that were congruent modulo 5, such as 2 and 7. (It's not immediately clear whether this is the only problem—for example, whether the congruences $n \equiv 2 \pmod{15}$ and $n \equiv 7 \pmod{25}$ must have a simultaneous solution. We'll return to this point later in the course.)

2. Three moduli:

- (a) *Find an integer that is congruent to* 1 (mod 5)*, congruent to* 0 (mod 7)*, and congruent to* 0 (mod 9)*.*
- (b) *Find an integer that is congruent to* 0 (mod 5)*, congruent to* 1 (mod 7)*, and congruent to* 0 (mod 9)*.*
- (c) *Find an integer that is congruent to* 0 (mod 5)*, congruent to* 0 (mod 7)*, and congruent to* 1 (mod 9)*.*
- (d) *What is the smallest positive integer that leaves a remainder of* 3 *when divided by* 5*, leaves a remainder of* 2 *when divided by* 7*, and leaves a remainder of* 1 *when divided by* 9*?*
- (e) *Why must every integer satisfying the three conditions in part (d) be congruent, modulo* $5 \cdot 7 \cdot 9$, to your answer to part (d)?
- (a) Such an integer must be of the form $7 \cdot 9 \cdot x$ (since $(7, 9) = 1$, any multiple of both 7 and 9 must also be a multiple of $7 \cdot 9$); we want to choose x so that $63x \equiv 1 \pmod{5}$ —that is, we want x to be the multiplicative inverse of 63 modulo 5. The extended Euclidean algorithm, or inspection, gives $x \equiv 2 \pmod{5}$, and so $63 \cdot 2 = 126$ is a solution.
- (b) Similarly, we need an integer $5 \cdot 9 \cdot x$ where $x \equiv (5 \cdot 9)^{-1}$ (mod 7); a calculation shows that $x = 5$ works, so that $5 \cdot 9 \cdot 5 = 225$ is a solution.
- (c) Since $(5 \cdot 7)^{-1} \equiv 8 \pmod{9}$, the integer $5 \cdot 7 \cdot 8 = 280$ is a solution.
- (d) Given our answers to parts (a)–(c), the linear combination $3 \cdot 126 + 2 \cdot 225 + 1 \cdot 280 = 1108$ is one such integer. However, we may subtract $5 \cdot 7 \cdot 9 = 315$ without changing any of the congruences modulo 5, 7, or 9; subtracting 315 three times yields $1108 - 3 \cdot 315 = 163$ as the smallest such integer. (Part (e) below justifies why it is the smallest one.)
- (e) Suppose n_1 and n_2 are two integers satisfying the simultaneous congruences $n \equiv 3 \pmod{5}$, $n \equiv 2 \pmod{7}$, and $n \equiv 1 \pmod{9}$. Then $n_1 - n_2 \equiv 3 - 3 = 0 \pmod{5}$, so that $5 | (n_1 - n_2)$. By the same argument, $7 | (n_1 - n_2)$; since $(5, 7) = 1$, we conclude that $5 \cdot 7 | (n_1 - n_2)$. Similarly, 9 | $(n_1 - n_2)$ and $(9, 5 \cdot 7) = 1$, and so $5 \cdot 7 \cdot 9$ | $(n_1 - n_2)$, which is to say $n_1 \equiv n_2 \pmod{5 \cdot 7 \cdot 9}$.

3. Given moduli m_1, m_2, \ldots, m_k *and integers* a_1, a_2, \ldots, a_k *, write down a formula for an integer that is congruent to* a_j (mod m_j) *for each* $1 \leq j \leq k$ *. What hypothesis (if any) is necessary on the moduli* m_1, m_2, \ldots, m_k ? *on the integers* a_1, a_2, \ldots, a_k ?

The answer is known as the **Chinese remainder theorem**: Let m_1, m_2, \ldots, m_k be nonzero integers such that $(m_i, m_j) = 1$ for all $1 \le i < j \le k$, and let a_1, a_2, \ldots, a_k be any integers. Then the integers satisfying the simultaneous congruences

$$
n \equiv a_1 \pmod{m_1}
$$

$$
n \equiv a_2 \pmod{m_2}
$$

$$
\vdots
$$

$$
n \equiv a_k \pmod{m_k}
$$

consist of a single residue class modulo $m_1m_2\cdots m_k$. One such integer is given by the formula

$$
n = b_1 M_1 a_1 + \dots + b_k M_k a_k, \tag{1}
$$

where $M_j = m_1 \cdots m_{j-1} m_{j+1} \cdots m_k$ is the product of all of the m_i except for m_j , and $b_j \equiv$ M_j^{-1} (mod m_j).

Note that for $k \geq 3$, there is a difference between the m_k being *pairwise coprime*—meaning that $(m_i, m_j) = 1$ for all $1 \leq i \leq j \leq k$ —and the k-tuple (m_1, \ldots, m_k) having greatest common divisor equal to 1; the former condition implies the latter condition, but not conversely as the triple (6, 10, 15) shows. EXERCISE: Verify that the proof of the Chinese remainder theorem requires the stronger condition of pairwise coprimality.

Notation: Let $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ be the set of all residue classes modulo m, and let $\mathbb{Z}_m^{\times} = (\mathbb{Z}/m\mathbb{Z})^{\times}$ be the set of reduced residue classes modulo m.

Structural comments (with a payoff at the end): Whenever $d \mid m$, there is a well-defined projection map $\pi_d : \mathbb{Z}_m \to \mathbb{Z}_d$ given by $\pi_d(a \mod m) = a \mod d$. (EXERCISE: Verify that this map is *not* well-defined when $d \nmid m$. For example, it doesn't make sense to talk about whether elements of \mathbb{Z}_7 are even or odd.) Now, let m_1, m_2, \ldots, m_r be pairwise coprime. The map between sets

$$
\pi: \mathbb{Z}_{m_1m_2\cdots m_r} \longrightarrow \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r},
$$

is given in each component \mathbb{Z}_{m_i} by π_{m_i} . The Chinese remainder theorem gives a map

$$
\rho: \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r} \longrightarrow \mathbb{Z}_{m_1 m_2 \cdots m_r},
$$

given by the formula in equation (1); the statement of the theorem is equivalent to saying that $\pi \circ \rho$ is the identity map. Since both sets are finite, we conclude that π and ρ are set bijections.

One can check (EXERCISE) that π *and* ρ *respect addition and multiplication* (indeed, that was part of how we deduced general formulas such as $1(c)$ and $2(d)$ from specific cases such as $1(a)$ –(b) and 2(a)–(c). In other words, π *and* ρ *are ring isomorphisms*.

Moreover, one can check (EXERCISE) that π *and* ρ *respect coprimality*: an element $a \in \mathbb{Z}_{m_1m_2\cdots m_r}$ is coprime to $m_1 \cdots m_r$ if and only if the *j*th coordinate of $\pi(a)$ is coprime to m_j for each $1 \leq j \leq r$ r. In other words, π and ρ induce *isomorphisms of multiplicative groups*

$$
\pi^{\times} : (\mathbb{Z}_{m_1m_2\cdots m_r})^{\times} \longrightarrow \mathbb{Z}_{m_1}^{\times} \times \mathbb{Z}_{m_2}^{\times} \times \cdots \times \mathbb{Z}_{m_r}^{\times}
$$

$$
\rho^{\times} : \mathbb{Z}_{m_1}^{\times} \times \mathbb{Z}_{m_2}^{\times} \times \cdots \times \mathbb{Z}_{m_r}^{\times} \longrightarrow (\mathbb{Z}_{m_1m_2\cdots m_r})^{\times}.
$$

In particular, these maps are set bijections; since $\phi(n)$ is, by definition, the cardinality of \mathbb{Z}_n^{\times} , we conclude that the Euler phi-function is *multiplicative*, meaning that

$$
\phi(m_1 m_2 \cdots m_r) = \phi(m_1)\phi(m_2) \cdots \phi(m_r)
$$
 whenever m_1, \ldots, m_r are pairwise coprime. (2)

One important special case of all this is when n is factored (uniquely, by the fundamental theorem of arithmetic) into a product of powers of distinct primes,

$$
n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}
$$

with $\alpha_i > 0$ and $p_i \neq p_j$ for all $i \neq j$; verify that $p_1^{\alpha_1}, \dots, p_r^{\alpha_r}$ are indeed pairwise coprime.

We are thus motivated to compute $\phi(p^{\alpha})$ for prime p; but the only integers $1 \leq k \leq p^{\alpha}$ with $(p^{\alpha}, k) > 1$ must have $(p^{\alpha}, k) = p^{\beta}$ for some $1 \leq \beta \leq \alpha$, and in particular must be multiples of p. We deduce that the integers in the range $1 \leq k \leq p^{\alpha}$ that are not coprime to p^{α} are precisely the $p^{\alpha-1}$ multiples of p in that range; consequently, $\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha} (1 - \frac{1}{n})$ $\frac{1}{p}).$

Consequently, we may write down a *formula for* $\phi(n)$ *, for any integer n, in terms of its prime factorization*, thanks to the multiplicative property (2):

$$
\phi(p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}) = (p_1^{\alpha_1} - p_1^{\alpha_1-1})\cdots (p_r^{\alpha_r} - p_r^{\alpha_r-1}) = \prod_{j=1}^r p_j^{\alpha_j} (1 - \frac{1}{p_j}),
$$

or equivalently

$$
\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right),
$$

where the product runs over all (distinct) prime divisors p of n .