Math 437/537—Group Work #3
Tuesday, October 1, 2024

1. Prove Hensel’s lemma: Let f(x) be a polynomial with integer coefficients, and let p’ be a prime
power. Suppose that a € 7 satisfies

f(a) =0 (mod p’) and f'(a) # 0 (mod p).

Prove that there exists a unique integer t with 0 < t < p such that f(a + tp’) = 0 (mod p’*1).
Find a formula for that integer t. You may use the statements in #2(a) and #2(b) below.

Using equation (1) below with h = tp/,
d

fla+ ) = X 2 — pw + i +Z

k=0

= f(a) +tp’ f'(a) (mod pj“),
since each remaining summand is a multiple of p?/ and hence of p’! (since j > 1). To have
f(a+tp’) = 0 (mod p’**), we must therefore have f(a)+tp’ f'(a) = 0 (mod p’™), or equivalently

+1
M +tf'(a) =0 (mod pj—)

v P
by Theorem 2.3(1); note that we are assuming that fl()a) is an integer. Since we are also assuming

that f’(a) #Z 0 (mod p), the integer f’(a) is relatively prime to p (since p is prime) and therefore
invertible modulo p, and we can solve for ¢:

t=—(f"(a))”

All of our manipulations were equivalences, so this t is a solution and is the only solution modulo p.

L g,

[Side observation: starting from the root a (mod p’), the root (mod p’*!) that we construct is

a+tpy =a— (f'(a))_lg =a—(f(a))" " f(a).

Note that this is the exact same formula as in Newton’s method for improving approximations of
roots of differentiable functions! There’s a sense in which Hensel’s lemma truly is the same as
Newton’s method, but over the p-adic numbers rather than over the real numbers. ]

(continued on next page)



2. Concerning polynomials with integer coefficients:
(a) Let f(x) € Z|x] have degree d. Then for any a, h € Z, prove that

f(a+h):f(a)#—hf/(a)—l—hQ%@+--'+hd%. (1)

(Hint: with a fixed, consider both sides as polynomials in the variable h.)

(k)
(b) Let f(x) € Z[z|, and let a € Z and k € N. Show that / k'(a) is an integer. You may use

the statement in #2(c) below.

(¢c) Prove that the product of any k consecutive integers is a multiple of k!. (Note that the
following is not a valid proof: each individual integer between 1 and k divides the product
of k consecutive integers, and thus 1 - 2 - - - k must as well. Why is this proof invalid?) Hint
for one possible proof: for any prime p, compare the power of p dividing k! with the power
of p dividing the product of consecutive integers.

(a) Let g,(h) denote the polynomial on the right-hand side of equation (1); we want to prove
that f(a + h) = g.(h). We easily see that f(a + 0) = f(a) = ¢,(0). Also, note that
gh(h) = f'(a) + h(something), and so ¢, (0) = f'(a) = f'(a+ h). More generally, for any
j < d, the first 7 terms on the right-hand side vanish when we take the dth derivative; thus

' - b (g
gc(z])(h):Zk(k—1)~--(k_j+1)hkJf k;l( )

~ 19(a) L i fP()
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and so ¢9)(0) = f@(a) = fY(a + 0). In other words, the two polynomials degree-
d polynomials g,(h) and f(a + h) are equal at h = 0 and have equal 1st, 2nd, ..., dth
derivatives at h = 0, which implies that they are the same polynomial.

Alternately, one may proceed by induction on d, the case d = 0 being trivial. If the
statement is true for degree-d polynomials, let F'(x) be a degree-(d + 1) polynomial, and
write G, (h) for the right-hand side of equation (1) with f replaced by F. Then G,(0) =
F(a) = F(a + 0) as before. Moreover, if we set f(x) = F'(x) and g,(h) to be the
polynomial on the right-hand side of equation (1) (for f) as above, then one can check that
G!.(h) = go(h). By the induction hypothesis, equation (1) holds for f(a + h) and g,(h).
Therefore we see that '(a+ h) and G, (h) have the same value at & = 0 and have the same
polynomial as their derivatives, hence must be equal. (In fact, this is really the same proof
as above, phrased in terms of induction.)

(b) If f(x) = ZZ:O crx® for some integers cy, then

k=j+1

4) k(= 1) (b — i1 ,
/ .(a)zﬁzck ( ) ( J+ >akfj;
g! , g!
k=j
the fractions inside the sum are all integers by part (c), and so each &,(“) is an integer.
7!
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(c) (The parenthetical proof is invalid because we cannot conclude, from the fact that a and b
both divide m, that their product ab automatically divides m. We would need (a,b) = 1

to make this deduction. Since the numbers 1, 2, ... k are not pairwise relatively prime for
k > 4, this proof isn’t valid.)
Given k consecutive integers, which we write as n + 1,n + 2,....,n + k, let G =

(n+1)(n+2)---(n+k) denote their product. To prove that k! | G, it suffices to show that
v,(k!) < v,(G) for every prime p, where v, was defined in problem #3 of Homework 1.
(Verify that in fact a | 0 if and only if v,(a) | v,(b) for all primes p.) On Homework 1, you

learned that
| k
vp (k) = g { J :

— | pJ

7=1
(In fact you can truncate this “infinite” sum explicitly, but since all but finitely many terms
equal 0, this form is also fine.) This implies that

0(G) = vp((” ;k)!) — u((n + k)!) — vy(nl) = f: Q”; ’“J _ LgD

j=1

Therefore, to show that v,(k!) < v,(G) it suffices to show that for every prime p,

A= 15

But this isn’t too hard: note that
Bl <k nontn
o | P r P o
and since the left-hand side is an integer, it must be less than or equal to the greatest integer
less than or equal to the right-hand side—that 1is,

)= [
v v’ v’
which is what we need.

(Now, after all that, let me surprise you with a one-line proof: k! divides GG because the

binomial coefficient ("1*) = £ is always an integer!)

T k!




