Math 437/537—Group Work #3 Tuesday, October 1, 2024

1. Prove Hensel's lemma: Let $f(x)$ be a polynomial with integer coefficients, and let p^j be a prime *power.* Suppose that $a \in \mathbb{Z}$ satisfies

$$
f(a) \equiv 0 \pmod{p^j}
$$
 and $f'(a) \not\equiv 0 \pmod{p}$.

Prove that there exists a unique integer t *with* $0 \le t < p$ *such that* $f(a + tp^j) \equiv 0 \pmod{p^{j+1}}$ *. Find a formula for that integer* t*. You may use the statements in #2(a) and #2(b) below.*

Using equation (1) below with $h = tp^j$,

$$
f(a + tpj) = \sum_{k=0}^{d} (tpj)k \frac{f(k)(a)}{k!} = f(a) + tpj f'(a) + \sum_{k=2}^{d} (tpj)k \frac{f(k)(a)}{k!}
$$

$$
\equiv f(a) + tpj f'(a) \pmod{p^{j+1}},
$$

since each remaining summand is a multiple of p^{2j} and hence of p^{j+1} (since $j \ge 1$). To have $f(a+tp^j) \equiv 0 \pmod{p^{j+1}}$, we must therefore have $f(a)+tp^j f'(a) \equiv 0 \pmod{p^{j+1}}$, or equivalently

$$
\frac{f(a)}{p^j} + tf'(a) \equiv 0 \left(\text{mod } \frac{p^{j+1}}{p^j} \right)
$$

by Theorem 2.3(1); note that we are assuming that $\frac{f(a)}{p^j}$ is an integer. Since we are also assuming that $f'(a) \neq 0$ (mod p), the integer $f'(a)$ is relatively prime to p (since p is prime) and therefore invertible modulo p , and we can solve for t :

$$
t \equiv -(f'(a))^{-1} \frac{f(a)}{p^j} \pmod{p}.
$$

All of our manipulations were equivalences, so this t is a solution and is the only solution modulo p .

[Side observation: starting from the root a (mod p^j), the root (mod p^{j+1}) that we construct is

$$
a + tpj = a - (f'(a))^{-1} \frac{f(a)}{p^{j}} p^{j} = a - (f'(a))^{-1} f(a).
$$

Note that this is the exact same formula as in Newton's method for improving approximations of roots of differentiable functions! There's a sense in which Hensel's lemma truly is the same as Newton's method, but over the *p*-adic numbers rather than over the real numbers.]

2. Concerning polynomials with integer coefficients:

(a) Let $f(x) \in \mathbb{Z}[x]$ have degree d. Then for any $a, h \in \mathbb{Z}$, prove that

$$
f(a+h) = f(a) + hf'(a) + h^2 \frac{f''(a)}{2!} + \dots + h^d \frac{f^{(d)}(a)}{d!}.
$$
 (1)

(Hint: with a *fixed, consider both sides as polynomials in the variable* h*.)*

- (b) Let $f(x) \in \mathbb{Z}[x]$, and let $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. Show that $\frac{f^{(k)}(a)}{b!}$ $k!$ *is an integer. You may use the statement in #2(c) below.*
- (c) *Prove that the product of any* k *consecutive integers is a multiple of* k!*. (Note that the following is* not *a valid proof: each individual integer between* 1 *and* k *divides the product of* k *consecutive integers, and thus* 1 · 2 · · · k *must as well. Why is this proof invalid?) Hint for one possible proof: for any prime* p*, compare the power of* p *dividing* k! *with the power of* p *dividing the product of consecutive integers.*
- (a) Let $g_a(h)$ denote the polynomial on the right-hand side of equation (1); we want to prove that $f(a + h) = g_a(h)$. We easily see that $f(a + 0) = f(a) = g_a(0)$. Also, note that $g'_a(h) = f'(a) + h(\text{something})$, and so $g'_a(0) = f'(a) = f'(a+h)$. More generally, for any $j \leq d$, the first j terms on the right-hand side vanish when we take the dth derivative; thus

$$
g_a^{(j)}(h) = \sum_{k=j}^d k(k-1)\cdots(k-j+1)h^{k-j}\frac{f^{(k)}(a)}{k!}
$$

$$
= \frac{f^{(j)}(a)}{j!} + h \sum_{k=j+1}^d h^{k-j-1}\frac{f^{(k)}(a)}{(k-j)!}
$$

and so $g_a^{(j)}(0) = f^{(j)}(a) = f^{(j)}(a+0)$. In other words, the two polynomials degreed polynomials $g_a(h)$ and $f(a + h)$ are equal at $h = 0$ and have equal 1st, 2nd, ..., dth derivatives at $h = 0$, which implies that they are the same polynomial.

Alternately, one may proceed by induction on d, the case $d = 0$ being trivial. If the statement is true for degree-d polynomials, let $F(x)$ be a degree- $(d + 1)$ polynomial, and write $G_a(h)$ for the right-hand side of equation (1) with f replaced by F. Then $G_a(0)$ = $F(a) = F(a + 0)$ as before. Moreover, if we set $f(x) = F'(x)$ and $g_a(h)$ to be the polynomial on the right-hand side of equation (1) (for f) as above, then one can check that $G'_{a}(h) = g_{a}(h)$. By the induction hypothesis, equation (1) holds for $f(a + h)$ and $g_{a}(h)$. Therefore we see that $F(a+h)$ and $G_a(h)$ have the same value at $h = 0$ and have the same polynomial as their derivatives, hence must be equal. (In fact, this is really the same proof as above, phrased in terms of induction.)

(b) If $f(x) = \sum_{k=0}^{d} c_k x^k$ for some integers c_k , then

$$
\frac{f^{(j)}(a)}{j!} = \sum_{k=j}^{d} c_k \frac{k(k-1)\cdots(k-j+1)}{j!} a^{k-j};
$$

the fractions inside the sum are all integers by part (c), and so each $\frac{f^{(j)}(a)}{i!}$ $\frac{\partial f(a)}{\partial y}$ is an integer.

(continued on next page)

(c) (The parenthetical proof is invalid because we cannot conclude, from the fact that a and b both divide m, that their product ab automatically divides m. We would need $(a, b) = 1$ to make this deduction. Since the numbers $1, 2, \ldots, k$ are not pairwise relatively prime for $k \geq 4$, this proof isn't valid.)

Given k consecutive integers, which we write as $n + 1, n + 2, \ldots, n + k$, let $G =$ $(n+1)(n+2)\cdots(n+k)$ denote their product. To prove that $k! | G$, it suffices to show that $v_p(k!) \le v_p(G)$ for every prime p, where v_p was defined in problem #3 of Homework 1. (Verify that in fact $a \mid b$ if and only if $v_p(a) \mid v_p(b)$ for all primes p.) On Homework 1, you learned that

$$
v_p(k!) = \sum_{j=1}^{\infty} \left\lfloor \frac{k}{p^j} \right\rfloor.
$$

(In fact you can truncate this "infinite" sum explicitly, but since all but finitely many terms equal 0, this form is also fine.) This implies that

$$
v_p(G) = v_p\left(\frac{(n+k)!}{n!}\right) = v_p((n+k)!) - v_p(n!) = \sum_{j=1}^{\infty} \left(\left\lfloor \frac{n+k}{p^j} \right\rfloor - \left\lfloor \frac{n}{p^j} \right\rfloor \right).
$$

Therefore, to show that $v_p(k!) \le v_p(G)$ it suffices to show that for every prime p,

$$
\left\lfloor \frac{k}{p^j} \right\rfloor \le \left\lfloor \frac{n+k}{p^j} \right\rfloor - \left\lfloor \frac{n}{p^j} \right\rfloor.
$$

But this isn't too hard: note that

$$
\left\lfloor \frac{k}{p^j} \right\rfloor + \left\lfloor \frac{n}{p^j} \right\rfloor \le \frac{k}{p^j} + \frac{n}{p^j} = \frac{n+k}{p^j};
$$

and since the left-hand side is an integer, it must be less than or equal to the greatest integer less than or equal to the right-hand side—that is,

$$
\left\lfloor \frac{k}{p^j} \right\rfloor + \left\lfloor \frac{n}{p^j} \right\rfloor \le \left\lfloor \frac{n+k}{p^j} \right\rfloor,
$$

which is what we need.

(Now, after all that, let me surprise you with a one-line proof: $k!$ divides G because the binomial coefficient $\binom{n+k}{k}$ $\binom{+k}{k} = \frac{G}{k!}$ $\frac{G}{k!}$ is always an integer!)