
Math 437/537—Group Work #3
Tuesday, October 1, 2024

1. Prove Hensel’s lemma: Let f(x) be a polynomial with integer coefficients, and let pj be a prime
power. Suppose that a ∈ Z satisfies

f(a) ≡ 0 (mod pj) and f ′(a) ̸≡ 0 (mod p).

Prove that there exists a unique integer t with 0 ≤ t < p such that f(a + tpj) ≡ 0 (mod pj+1).
Find a formula for that integer t. You may use the statements in #2(a) and #2(b) below.

Using equation (1) below with h = tpj ,

f(a+ tpj) =
d∑

k=0

(tpj)k
f (k)(a)

k!
= f(a) + tpjf ′(a) +

d∑
k=2

(tpj)k
f (k)(a)

k!

≡ f(a) + tpjf ′(a) (mod pj+1),

since each remaining summand is a multiple of p2j and hence of pj+1 (since j ≥ 1). To have
f(a+tpj) ≡ 0 (mod pj+1), we must therefore have f(a)+tpjf ′(a) ≡ 0 (mod pj+1), or equivalently

f(a)

pj
+ tf ′(a) ≡ 0

(
mod

pj+1

pj

)
by Theorem 2.3(1); note that we are assuming that f(a)

pj
is an integer. Since we are also assuming

that f ′(a) ̸≡ 0 (mod p), the integer f ′(a) is relatively prime to p (since p is prime) and therefore
invertible modulo p, and we can solve for t:

t ≡ −(f ′(a))−1f(a)

pj
(mod p).

All of our manipulations were equivalences, so this t is a solution and is the only solution modulo p.

[Side observation: starting from the root a (mod pj), the root (mod pj+1) that we construct is

a+ tpj = a− (f ′(a))−1f(a)

pj
pj = a− (f ′(a))−1f(a).

Note that this is the exact same formula as in Newton’s method for improving approximations of
roots of differentiable functions! There’s a sense in which Hensel’s lemma truly is the same as
Newton’s method, but over the p-adic numbers rather than over the real numbers.]
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2. Concerning polynomials with integer coefficients:

(a) Let f(x) ∈ Z[x] have degree d. Then for any a, h ∈ Z, prove that

f(a+ h) = f(a) + hf ′(a) + h2f
′′(a)

2!
+ · · ·+ hdf

(d)(a)

d!
. (1)

(Hint: with a fixed, consider both sides as polynomials in the variable h.)

(b) Let f(x) ∈ Z[x], and let a ∈ Z and k ∈ N. Show that
f (k)(a)

k!
is an integer. You may use

the statement in #2(c) below.
(c) Prove that the product of any k consecutive integers is a multiple of k!. (Note that the

following is not a valid proof: each individual integer between 1 and k divides the product
of k consecutive integers, and thus 1 · 2 · · · k must as well. Why is this proof invalid?) Hint
for one possible proof: for any prime p, compare the power of p dividing k! with the power
of p dividing the product of consecutive integers.

(a) Let ga(h) denote the polynomial on the right-hand side of equation (1); we want to prove
that f(a + h) = ga(h). We easily see that f(a + 0) = f(a) = ga(0). Also, note that
g′a(h) = f ′(a)+h(something), and so g′a(0) = f ′(a) = f ′(a+h). More generally, for any
j ≤ d, the first j terms on the right-hand side vanish when we take the dth derivative; thus

g(j)a (h) =
d∑

k=j

k(k − 1) · · · (k − j + 1)hk−j f
(k)(a)

k!

=
f (j)(a)

j!
+ h

d∑
k=j+1

hk−j−1 f
(k)(a)

(k − j)!

and so g
(j)
a (0) = f (j)(a) = f (j)(a + 0). In other words, the two polynomials degree-

d polynomials ga(h) and f(a + h) are equal at h = 0 and have equal 1st, 2nd, ..., dth
derivatives at h = 0, which implies that they are the same polynomial.

Alternately, one may proceed by induction on d, the case d = 0 being trivial. If the
statement is true for degree-d polynomials, let F (x) be a degree-(d + 1) polynomial, and
write Ga(h) for the right-hand side of equation (1) with f replaced by F . Then Ga(0) =
F (a) = F (a + 0) as before. Moreover, if we set f(x) = F ′(x) and ga(h) to be the
polynomial on the right-hand side of equation (1) (for f ) as above, then one can check that
G′

a(h) = ga(h). By the induction hypothesis, equation (1) holds for f(a + h) and ga(h).
Therefore we see that F (a+h) and Ga(h) have the same value at h = 0 and have the same
polynomial as their derivatives, hence must be equal. (In fact, this is really the same proof
as above, phrased in terms of induction.)

(b) If f(x) =
∑d

k=0 ckx
k for some integers ck, then

f (j)(a)

j!
=

d∑
k=j

ck
k(k − 1) · · · (k − j + 1)

j!
ak−j;

the fractions inside the sum are all integers by part (c), and so each f (j)(a)
j!

is an integer.
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(c) (The parenthetical proof is invalid because we cannot conclude, from the fact that a and b
both divide m, that their product ab automatically divides m. We would need (a, b) = 1
to make this deduction. Since the numbers 1, 2, . . . , k are not pairwise relatively prime for
k ≥ 4, this proof isn’t valid.)

Given k consecutive integers, which we write as n + 1, n + 2, . . . , n + k, let G =
(n+1)(n+2) · · · (n+k) denote their product. To prove that k! | G, it suffices to show that
vp(k!) ≤ vp(G) for every prime p, where vp was defined in problem #3 of Homework 1.
(Verify that in fact a | b if and only if vp(a) | vp(b) for all primes p.) On Homework 1, you
learned that

vp(k!) =
∞∑
j=1

⌊
k

pj

⌋
.

(In fact you can truncate this “infinite” sum explicitly, but since all but finitely many terms
equal 0, this form is also fine.) This implies that

vp(G) = vp

(
(n+ k)!

n!

)
= vp((n+ k)!)− vp(n!) =

∞∑
j=1

(⌊
n+ k

pj

⌋
−
⌊
n

pj

⌋)
.

Therefore, to show that vp(k!) ≤ vp(G) it suffices to show that for every prime p,⌊
k

pj

⌋
≤

⌊
n+ k

pj

⌋
−
⌊
n

pj

⌋
.

But this isn’t too hard: note that⌊
k

pj

⌋
+

⌊
n

pj

⌋
≤ k

pj
+

n

pj
=

n+ k

pj
;

and since the left-hand side is an integer, it must be less than or equal to the greatest integer
less than or equal to the right-hand side—that is,⌊

k

pj

⌋
+

⌊
n

pj

⌋
≤

⌊
n+ k

pj

⌋
,

which is what we need.
(Now, after all that, let me surprise you with a one-line proof: k! divides G because the

binomial coefficient
(
n+k
k

)
= G

k!
is always an integer!)


