
Math 437/537—Group Work #5
Tuesday, October 15, 2024

1. We define a base-b pseudoprime to be a composite number m such that bm−1 ≡ 1 (mod m).

(a) Using the fact that 210 = 3 · 341 + 1, show that 2341−1 ≡ 1 (mod 341). Conclude that 341
is either a prime or a base-2 pseudoprime.

(b) Using the fact that 310 = 173 ·341+56, show that 341 is not a base-3 pseudoprime. (Hint:
calculate 56 · 562 (mod 341).)

(c) Why does the calculation in part (b) prove that 341 is composite?

(a) The given fact tells us that 210 ≡ 1 (mod 341), and so

2341−1 = (210)34 ≡ 134 = 1 (mod 341).

If 341 is prime, then it’s prime; if it’s composite, then it satisfies the definition of a base-2
pseudoprime.

(b) We calculate that 562 = 3136 = 9 · 341 + 67 ≡ 67 (mod 341), and so 56 · 562 ≡ 56 · 67 =
3752 = 11·341+1 ≡ 1 (mod 341). Therefore, since we are given that 310 ≡ 56 (mod 341),

3341−1 = (310)34 ≡ 5634 = (563)11 · 56 ≡ 111 · 56 ̸≡ 1 (mod 341),

and so 341 is not a base-3 pseudoprime.
(c) If 341 were prime, then since (3, 341) = 1, Fermat’s little theorem would tell us that

3341−1 ≡ 1 (mod 341). Since this is not the case, we conclude that 341 must be composite.

In this way, we see that Fermat’s little theorem can be turned into a compositeness proof: if we
find a b (not a multiple of m) for which bm−1 fails to be congruent to 1 modulo m, then m must be
composite. Prime numbers always pass this test, by Fermat’s little theorem; a base-b pseudoprime
is a composite number that sneaks by this “(Fermat) base-b pseudoprime test” as a false positive.
As it happens, all of the operations involved in the base-b pseudoprime test (modular exponenti-
ation, computing congruences and gcds) are lightning fast on computers, while actually factoring
very large numbers is prohibitively slow. This leads to the strange state of affairs that there are
lots of large numbers that we have proved composite, using pseudoprime tests, but which we are
unable to factor!

2. We define a Carmichael number to be a composite number m such that bm−1 ≡ 1 (mod m) for
every integer b satisfying (b,m) = 1. In other words, a Carmichael number is a base-b pseudo-
prime for every reduced residue b modulo m.

(a) Using the fact that 561 = 3 · 11 · 17, prove that 561 is a Carmichael number.
(b) Suppose that k is an integer such that 6k+1, 12k+1, and 18k+1 are all prime. Prove that

(6k + 1)(12k + 1)(18k + 1) is a Carmichael number. Deduce that 1729 is a Carmichael
number.

(a) We need to prove that for every (b, 561) = 1, we have b560 ≡ 1 (mod 561). By the Chinese
remainder theorem, since 3, 11, 17 are pairwise coprime, this congruence is equivalent to



the trio of congruences

b560 ≡ 1 (mod 3)

b560 ≡ 1 (mod 11)

b560 ≡ 1 (mod 17).

Note also that b is coprime to 561 if and only if it is coprime to each of 3, 11, 17. Therefore
Fermat’s little theorem tells us that

b2 ≡ 1 (mod 3)

b10 ≡ 1 (mod 11)

b16 ≡ 1 (mod 17),

and therefore

b560 = (b2)280 ≡ 1280 ≡ 1 (mod 3)

b560 = (b10)56 ≡ 156 ≡ 1 (mod 11)

b560 = (b16)35 ≡ 135 ≡ 1 (mod 17)

as needed.
(b) Let m = (6k + 1)(12k + 1)(18k + 1). Just as in part (a), we need to show that if (b,m) =

1 then bm−1 ≡ 1 (mod m); by the Chinese remainder theorem, since the three primes
6k + 1, 12k + 1, 18k + 1 are pairwise coprime, it suffices to show

bm−1 ≡ 1 (mod 6k + 1)

bm−1 ≡ 1 (mod 12k + 1) (1)

bm−1 ≡ 1 (mod 18k + 1).

Again, (b,m) = 1 is equivalent to (b, 6k + 1) = (b, 12k + 1) = (b, 18k + 1) = 1, and so
Fermat’s little theorem tells us that

b6k ≡ 1 (mod 6k + 1)

b12k ≡ 1 (mod 12k + 1) (2)

b18k ≡ 1 (mod 18k + 1).

As in part (a), to show that the congruences (2) imply the congrences (1), it suffices to show
that each of 6k, 12k, and 18k divides m = 1.

Method 1: Multiply out m− 1 = (6k+1)(12k+1)(18k+1)− 1 = 1296k3 +396k2 +
36k = 36k(36k2 + 11k + 1) and note that each of 6k, 12k, and 18k divides 36k.

Method 2: Simplify the polynomial multiplication by using 6k, 12k, and 18k as moduli.
For example,

(6k + 1)(12k + 1)(18k + 1)− 1 ≡ (6k + 1)(−6k + 1)(1) = (−36k2 + 1) ≡ 1 (mod 18k).

Since setting k = 1 results in the three primes 7, 13, 19, we conclude that 7 · 13 · 19 = 1729
is a Carmichael number.

[Side note: the next three Carmichael numbers of this form come from k = 6, 35, 45. It is conjec-
tured that there are infinitely many integers k such that 6k+1, 12k+1, and 18k+1 are all prime,
but this is still an open problem, similar to but probably harder than the twin primes conjecture.]



The first four Carmichael numbers are 561, 1105, 1729, and 2465. In 1994, Alford, Granville,
and Pomerance showed that there are infinitely many Carmichael numbers, in the paper of the
same name. The existence of Carmichael numbers means that the base-b pseudoprime tests from
problem #1 will never be perfect: some composite numbers sneak by all of them.
The method you used in problem #2 is encapsulated in “Korselt’s criterion” for a number to be a
Carmichael number, if you want to read more about that.

3. This problem provides another way to show that a number is composite without factoring it.

(a) Let m be an odd number and b an integer relatively prime to m. Write m− 1 = 2vn where
n is odd. Consider the sequence

bn (mod m), b2n (mod m), . . . , b2
v−1n (mod m), b2

vn = bm−1 (mod m).

Suppose that for some 1 ≤ k ≤ v, we have b2
k−1n ̸≡ ±1 (mod m) and b2

kn ≡ 1 (mod m).
Show that m is composite.

(b) Show that m = 1729 is composite by computing the above sequence with b = 2. You may
use the fact that 227 ≡ 645 (mod 1729).

(a) We note that (b2k−1n)2 = b2
kn ≡ 1 (mod m); therefore b2

k−1n is a solution of the con-
gruence x2 ≡ 1 (mod m). If m were prime, then Lemma 2.10 would tell us that the
only solutions of x2 ≡ 1 (mod m) are x ≡ ±1 (mod m); but we are given that b2k−1n ̸≡
±1 (mod m), and so m cannot be prime.

(b) We write 1729− 1 = 26 · 27, and we calculate

254 = (227)2 ≡ 6452 = 416025 ≡ 1065 ̸≡ ±1 (mod 1729)

2108 = (254)2 ≡ 10652 = 1134225 ≡ 1 (mod 1729).

(Note how the repeated squaring method means that we never have to deal with integers
larger than 17292.) Thus m = 1729 satisfies the assumptions of part (a) with b = 2, n = 27,
and k = 2 and is therefore composite.

The base-b pseudoprime test from problem #1 examines just the last number bm−1 (mod m) in the
sequence written in #3(a). Combining that test with the test given in #3(a) yields the “strong Fermat
pseudoprime test”, which (as we saw) unmasks more composite numbers than the Fermat pseu-
doprime test alone. Furthermore, the sequence is extremely easy to calculate, by first calculating
bn (mod m) and then squaring the result successively v times.
Finally, it can be shown that a composite number m can sneak by this “strong base-b pseudoprime
test” for at most m

4
residue classes b—there are no “strong Carmichael numbers”.


