
Math 437/537—Group Work #6
Tuesday, October 22, 2024

1. Determine whether the following congruences have solutions. You don’t have to find the
solutions—just decide whether solutions exist. You may use the fact that 41 and 227 are prime.

(a) x2 ≡ 21 (mod 41)
(b) x2 ≡ 21 (mod 419)
(c) 5x2 − x− 1 ≡ 0 (mod 419)
(d) x2 ≡ 137 (mod 227). Hint: 137− 227 factors more nicely than 137.
(e) x2 ≡ 11 (mod 221)

(a) By multiplicativity,
(
21
41

)
=

(
3
41

)(
7
41

)
. Since 41 ≡ 1 (mod 4), quadratic reciprocity results in

no sign changes:
(
3
41

)
=

(
41
3

)
and

(
7
41

)
=

(
41
7

)
. By periodicity,

(
41
3

)
=

(
2
3

)
= −1 (by brute

force, or since 3 ≡ ±3 (mod 8), for example), while
(
41
7

)
=

(−1
7

)
= −1 (by brute force,

or since 7 ≡ 3 (mod 4)). Therefore
(
21
41

)
=

(
2
3

)(−1
7

)
= (−1)(−1) = 1. We conclude that

x2 ≡ 21 (mod 41) does have solutions.
(b) The derivative of the polynomial f(x) = x2 − 21 is simply 2x. Therefore the only way

a root r of f(x) modulo m could be singular is if 2r ≡ 0 (mod m); if m is odd, then 2 is
invertible modulo m, and this is equivalent to r ≡ 0 (mod m). In this case, f(0) = −21 ̸≡
0 (mod 41), and so the two roots of f(x) (mod 41) that we found in part (a) are nonsingular.
Hensel’s lemma then tells us that there are exactly two roots of f(x) (mod 41j) for every
j ≥ 1.

(c) The discriminant of 5x2−x−1 equals (−1)2−4 ·5 · (−1) = 21, which is a square modulo
419 by part (b); therefore 5x2 − x − 1 ≡ 0 (mod 419) has solutions. (More concretely:
since (20, 419) = 1, the congruence 5x2 − x− 1 ≡ 0 (mod 419) is equivalent to 20(5x2 −
x − 1) ≡ 0 (mod 419), or (10x − 1)2 − 21 ≡ 0 (mod 419). Therefore the solutions to
y2 ≡ 21 (mod 419) can be transformed, via 10x − 1 ≡ y (mod 419) or equivalently x ≡
10−1(y + 1) (mod 419), into solutions to the original congruence.)

(d) By periodicity and then multiplicativity,(
137

227

)
=

(
−90

227

)
=

(
−1

227

)(
2

227

)(
32

227

)(
5

227

)
.

Since 227 ≡ 3 (mod 4) and 227 ≡ 3 (mod 8), we have
(−1
227

)
= −1 and

(
2

227

)
= −1; we

also have
(
32

p

)
= 1 for any odd prime p. Therefore

(
137
227

)
= (−1)(−1)1

(
5

227

)
=

(
5

227

)
.

Since 5 ≡ 1 (mod 4), quadratic reciprocity gives
(

5
227

)
=

(
227
5

)
; periodicity then gives(

227
5

)
=

(
2
5

)
= −1 by the formula for

(
2
p

)
. We conclude that

(
137
227

)
= −1, and so x2 ≡

137 (mod 227) has no solutions.
(e) First, here is an incorrect solution: Since 221 ≡ 1 (mod 4), quadratic reciprocity gives(

11
221

)
=

(
221
11

)
; periodicity then gives

(
221
11

)
=

(
1
11

)
= 1, and so there are solutions. (Wrong!)

Why is that reasoning incorrect? Because 221 = 13 × 17 is not prime! Indeed, the
congruence x2 ≡ 11 (mod 221) has solutions if and only if both the congruences x2 ≡
11 (mod 13) and x2 ≡ 11 (mod 17) have solutions. But it turns out that neither congruence
has solutions. For example, since 13 ≡ 1 (mod 4), quadratic reciprocity gives

(
11
13

)
=(

13
11

)
; periodicity then gives

(
13
11

)
=

(
2
11

)
= −1 since 11 ≡ 3 (mod 8). (Alternatively, by



periodicity and multiplicativity,
(
11
13

)
=

(−2
13

)
=

(−1
13

)(
2
13

)
= 1(−1) since 13 ≡ 1 (mod 4)

and 13 ≡ 5 (mod 8).) Similarly, our algorithm yields(
11

17

)
=

(
17

11

)
=

(
6

11

)
=

(
2

11

)(
3

11

)
= (−1)

(
−
(
11

3

))
=

(
2

3

)
= −1.

2.

(a) For which primes p does there exist an integer x such that x2 ≡ 5 (mod p)? State your
answer in terms of the last digit of p.

(b) For which primes p does there exist an integer x such that x2 ≡ −5 (mod p)? State your
answer in terms of the last two digits of p.

We note that when p = 2, both congruences have the solution x = 1, while when p = 5, both
congruences have the solution x = 0. During the proofs, therefore, we may assume p ̸= 2, 5.

(a) Since 5 ≡ 1 (mod 4), quadratic reciprocity tells us that
(
5
p

)
=

(
p
5

)
for any odd prime p ̸= 5.

It’s easy to establish (by brute force even) that
(
1
5

)
= 1,

(
2
5

)
= −1,

(
3
5

)
= −1, and

(
4
5

)
= 1.

Therefore
(
5
p

)
= 1 when p ≡ ±1 (mod 5), while

(
5
p

)
= −1 when p ≡ ±2 (mod 5). Note

that these two cases correspond to the last digit being 1 or 9, and 3 or 7, respectively.
Therefore x2 ≡ 5 (mod p) has a solution when the last digit of p is 1, 2, 5, or 9 but not
when the last digit of p is 3 or 7.

(b) We know that
(−1

p

)
= 1 when p ≡ 1 (mod 4) and

(−1
p

)
= −1 when p ≡ 3 (mod 4). There-

fore
(−5

p

)
=

(−1
p

)(
5
p

)
= 1 in precisely two cases: either p ≡ ±1 (mod 5) and p ≡ 1 (mod 4),

or else p ≡ ±2 (mod 5) and p ≡ 3 (mod 4). Either by doing a bunch of little Chinese re-
mainder calculations, or else just going through all the reduced residue classes modulo 20
by hand, we see that these cases correspond to the residue classes p ≡ 1, 3, 7, 9 (mod 20).
We conclude, amazingly, that the congruence x2 ≡ −5 (mod p) has solutions if and only if
the second-to-last digit of p is even! (This works for single digit primes too, as long as we
call the second-to-last digit 0.)

3. Let p be an odd prime, and let g be a primitive root modulo p, so that any a that is not a multiple
of p can be written as a ≡ gk (mod p) for some integer k. Prove that

(
a
p

)
= 1 if k is even while(

a
p

)
= −1 if k is odd.

There are multiple ways to see this. If we set k = 2j + ε with ε ∈ {0, 1}, we can use Euler’s
criterion to write(

a

p

)
≡ a(p−1)/2 ≡ (gk)(p−1)/2 = (gp−1)j

(
g(p−1)/2

)ε ≡ 1j(−1)ε (mod p).

(Note that g(p−1)/2 is a solution to x2 ≡ 1 (mod p) that is not congruent to 1 (mod p), which by
Lemma 2.10 forces g(p−1)/2 ≡ −1 (mod p).) Both integers

(
a
p

)
and (−1)ε are either 1 or −1, and

so they differ by at most 2; consequently, no odd prime can divide their difference unless that
difference equals 0. We conclude that

(
a
p

)
= (−1)ε, which is what we want to prove.

Alternatively, if k = 2j is even, then clearly x2 ≡ g2j (mod p) has solutions, namely x ≡
±gj (mod p); therefore

(
a
p

)
= 1 when a ≡ gk (mod p) with k even. And the p−1

2
even integers

{2, 4, . . . , p− 1} give rise to distinct residue classes g2, g4, . . . , gp−1 (mod p) (or else the quotient



of two of them would be 1 (mod p), contradicting the fact that the order of g is p − 1) which are
all quadratic residues; but we know that there are only p−1

2
quadratic residues (mod p). Therefore

the other p−1
2

integers {1, 3, . . . , p− 2}, which are all odd, must give rise to quadratic nonresidues
g1, g3, . . . , gp−2 (mod p).

Remark: remember our guiding principle that if a modulus m has primitive roots, then multiplica-
tion modulo m is just addition modulo ϕ(m) in disguise. In this case, the multiplication statement
“even powers of a primitive root are squares of something else (mod p), while odd powers of a
primitive root are nonsquares” is isomorphic to the addition statement “even multiples of 1 are
doubles of something else (mod p − 1), while odd multiples of 1 are not doubles”; and this latter
statement is obvious, since p − 1 is even. (Note, by the way, that if q is odd, then everything is a
double of something (mod q)!)


