
Math 437/537—Group Work #7
Tuesday, October 29, 2024

We say that an integer n is represented by a binary quadratic form f(x, y) = ax2 + bxy + cy2

if there exist integers x, y such that f(x, y) = n. We proved the following theorem in class last
week: a positive integer n is represented by x2 + y2 if and only if vq(n) is even for every prime
q ≡ 3 (mod 4).
We say that an integer n is properly represented by a binary quadratic form f(x, y) = ax2+ bxy+
cy2 if there exist coprime integers x, y such that f(x, y) = n. The goal of this group work is to
(almost) prove the following theorem: a positive integer n is properly represented by x2+y2 if and
only if 4 ∤ n, and every odd prime p | n satisfies p ≡ 1 (mod 4). (Exercise for later: prove that this
theorem implies the theorem in the previous paragraph.)

1. Show that the congruence t2 ≡ −1 (mod n) has a solution if and only if: 4 ∤ n, and every odd
prime p | n satisfies p ≡ 1 (mod 4).
First we determine the prime powers pα for which t2 ≡ −1 (mod pα) has a solution.

• When p = 2, we check by hand that t2 ≡ −1 (mod 2) has the solution t ≡ 1 (mod 2),
while t2 ≡ −1 (mod 22) does not have a solution; this latter fact automatically implies that
t2 ≡ −1 (mod 2α) doesn’t have a solution when α ≥ 2.

• Similarly, when p ≡ 3 (mod 4), the congruence t2 ≡ −1 (mod p) doesn’t have a solution
since

(−1
p

)
= −1 for these primes; this fact automatically implies that t2 ≡ −1 (mod pα)

doesn’t have a solution for any α ≥ 1.
• When p ≡ 1 (mod 4), the congruence t2 ≡ −1 (mod p) does have a solution since

(−1
p

)
= 1

for these primes. Any such solution must be nonsingular: the derivative of t2 + 1 is 2t,
which vanishes modulo p only when t ≡ 0 (mod p), but this is not a root of t2 + 1 ≡
0 (mod p) anyway. Therefore Hensel’s lemma tells us that t2 ≡ −1 (mod pα) has a solution
for every α ≥ 1 when p ≡ 1 (mod 4).

By the Chinese remainder theorem, the congruence t2 ≡ −1 (mod n) has a solution if and only
if t2 ≡ −1 (mod pα) has a solution for every pα | n; we quickly see that this is equivalent to the
condition in the statement of the problem.

2. Suppose that x2 + y2 is a proper representation of n, so that (x, y) = 1 and x2 + y2 = n.

(a) Let pα be a prime power dividing n. Show that x2 ≡ −y2 (mod pα). Conclude that there is
a solution to t2 ≡ −1 (mod pα).

(b) Show that t2 ≡ −1 (mod n) has a solution.

(a) Since pα | n = x2+y2, we have x2+y2 ≡ 0 (mod pα), or equivalently x2 ≡ −y2 (mod pα).
It’s not possible for (y, pα) > 1: this would imply that y ≡ 0 (mod p) and hence x2 ≡
−y2 ≡ 0 (mod p) as well, and so p | x and p | y, contadicting the coprimality assumption.
Therefore y is invertible modulo pα, and we can write (xy−1)2 ≡ 1 (mod pα), which shows
that t2 ≡ −1 (mod pα) has a solution. Equivalently, x2 ≡ −y2 (mod pα) implies x2 ≡
−y2 (mod p) implies

(
x
p

)2
=

(
x2

p

)
=

(−y2

p

)
=

(−1
p

)(
y
p

)2; if either
(
x
p

)
or

(
y
p

)
equals 0, than so

does the other one by this identity, again leading to the contradiction p | (x, y); therefore
1 =

(
x
p

)2
=

(−1
p

)(
y
p

)2
=

(−1
p

)
· 1, showing that t2 ≡ −1 (mod pα) has a solution. (Compare



this to the proof of Fermat’s theorem, about not-necessarily-proper representations, for
which p | x and p | y is actually a possibility.)

(b) Since t2 ≡ −1 (mod pα) has a solution for every pα | n by part (a), the Chinese remainder
theorem immediately implies that t2 ≡ −1 (mod n) has a solution. (Compare, if you like,
to the main paragraph in the proof of Theorem 3.13, which holds for more general binary
quadratic forms; I find that proof’s factorization of 4|n| into m1m2 to be less intuitive than
the standard factor-into-prime-powers argument.)

3. Suppose that t2 ≡ −1 (mod n) has a solution. Show that there exists a binary quadratic form
f(x, y) = ax2 + bxy + cy2, of discriminant b2 − 4ac = −4, such that f(1, 0) = n. Conclude that
there exists a binary quadratic form of discriminant −4 that properly represents n.

Choose an integer k such that k2 ≡ −1 (mod n), so that k2 = nc − 1 for some integer c. Then
the binary quadratic form f(x, y) = nx2 + 2kxy + cy2 has discriminant (2k)2 − 4nc = −4, and
f(1, 0) = n · 12 + 2k · 1 · 0 + c · 02 = n. In particular, gcd(1, 0) = 1, so this binary quadratic form
of discriminant −4 properly represents n. (Compare to the first paragraph in the proof of the more
general Theorem 3.13.)

4. Define f0(x, y) = 109x2+152xy+53y2, and let n = 109. (Note that 1522− 4 · 109 · 53 = −4.)

(a) Why does f0(x, y) properly represent n?
(b) Define f1(x, y) = f0(y, x). Why does f1(x, y) properly represent n?
(c) Define f2(x, y) = f1(x+my, y), where m is chosen so that if f2(x, y) = ax2 + bxy+ cy2,

then |b| < a. Why does f2(x, y) properly represent n?
(d) Keep alternating the previous two steps, creating binary quadratic forms f3, f4, . . . . What

ends up happening?

(a) We see immediately that f0(1, 0) = 109 = n, and gcd(1, 0) = 1, so this is a proper
represenation.

(b) We have f1(x, y) = 53x2 + 152xy + 109y2. The old inputs (1, 0) are mapped to the new
inputs (0, 1), and indeed f1(0, 1) = 109 is a proper representation of n.

(c) We have

f2(x, y) = 53x2 + (106m+ 152)xy + (53m2 + 152m+ 109)y2.

Choosing m = −1 makes the middle coefficient equal to 152 − 106 = 46, which is small
enough in absolute value. Therefore we set f2(x, y) = 53x2 + 46xy + 10y2. Can we find
x, y so that (x + my, y) = (x − y, y) = (0, 1) as ordered pairs? Certainly, because the
change of variables (x, y) 7→ (x − y, y) is inverted by (x, y) 7→ (x + y, y), so we can just
take (x, y) = (0 + 1, 1) = (1, 1); and indeed f2(1, 1) = 53 + 46 + 10 = n is a proper
representation.

(d) Continuing the pattern:
• We set f3(x, y) = f2(x, y) = 10x2+46xy+53y2, and see that f3(1, 1) = n is a proper

representation.
• We set f4(x, y) = f3(x +my, y) = 10x2 + (20m + 46)xy + (10m2 + 46m + 53)y2;

we want to choose m so that |46+ 20m| < 10, and the appropriate choice is m = −2.
Therefore f4(x, y) = 10x2 + 6xy + y2. The change of variables (x, y) 7→ (x− 2y, y)
is inverted by (x, y) 7→ (x+2y, y), so we can take (x, y) = (1+2 · 1, 1) = (3, 1); and
indeed f4(3, 1) = 90 + 18 + 1 = n is a proper representation. (We can check directly



that gcd(3, 1) = 1; but also notice that if gcd(x, y) = 1, then gcd(x +my, y) = 1 as
well for any integer m; so this type of variable change automatically preserves proper
representations.

• We set f5(x, y) = f4(y, x) = x2+6xy+10y2, and we see that f5(1, 3) = n is a proper
representation.

• We set f6(x, y) = f5(x+my, y) = x2 + (2m+ 6)xy + (m2 + 6m+ 10)y2; since we
want 6 + 2m to be small, we choose m = −3. Therefore f6(x, y) = x2 + y2. The
change of variables (x, y) 7→ (x − 3y, y) is inverted by (x, y) 7→ (x + 3y, y), so we
can take (x, y) = (1 + 3 · 3, 3) = (10, 3); and indeed f6(10, 3) = 102 + 32 = 109 is a
proper representation.

This process of “reducing” a binary quadratic form to one with the same discriminant and small
coefficients is the subject of Section 3.5 of Niven, Zuckerman, & Montgomery. For discriminant
−4, we will always end up with x2+y2, as it turns out. In the general case, however, there could be
several different binary quadratic forms at the final step. Indeed, these changes of variable generate
equivalence classes that partition the set of all binary quadratic forms of a particular discriminant;
there are finitely many such classes (see Theorems 3.18 and 3.19), and the number of classes
is called the class number of that discriminant. And yes, this set of equivalence classes can be
endowed with a group structure based on “composition” of forms, turning it into the class group;
and yes, this class group (for binary quadratic forms of discriminant d) is isomorphic to the class
group coming from equivalence classes of ideals (in the quadratic extension Q(

√
d)). Indeed, class

groups in rings of integers of number fields were investigated to generalize the phenomenon of
class groups coming from binary quadratic forms.


