
Math 437/537—Group Work #8
Tuesday, November 5, 2024

Recall the following notation that we’ve seen before:

• 1(n) = 1 is the constant function.
• τ(n) is the number of divisors of n.
• ω(n) is the number of distinct prime factors of n.
• s(n) is the indicator function of perfect squares: s(n) = 1 if n is a perfect square, and
s(n) = 0 otherwise. Recall that s(n) is multiplicative.

1. Find a multiplicative function f(n) such that τ(n) = (f ∗ s)(n). Hint: Start computing the
values of f(1), f(p), f(p2), f(p3), . . . . There should be a nice way of writing f(n) in terms
of ω(n).
If f(n) is multiplicative, then automatically f(1) = 1. Let’s compute f(pα) for prime powers pα.
We have:

2 = τ(p) = f(p)s(1) + f(1)s(p) = f(p) + 0 =⇒ f(p) = 2

3 = τ(p2) = f(p2)s(1) + f(p)s(p) + f(1)s(p2) = f(p2) + 1 =⇒ f(p2) = 2

4 = τ(p3) = f(p3)s(1) + f(p2)s(p) + f(p)s(p2) + f(1)s(p3) = f(p3) + 2 =⇒ f(p3) = 2

5 = τ(p4) = f(p4)s(1) + f(p3)s(p) + f(p2)s(p2) + f(p)s(p3) + f(1)s(p4)

= f(p4) + 2 + 1 =⇒ f(p4) = 2,

which strongly suggests that f(pα) = 2 for all prime powers. Indeed, we can check that( α−1∑
j=0

2s(pj)

)
+ 1s(pα) = 2#{0 ≤ j ≤ α− 1: j is even}+

{
1, if α is even
0, if α is odd

}
= α + 1

for all α ≥ 1, which proves the pattern found above. Since f(n) is multiplicative, we conclude
that

f(n) =
∏
pα∥n

f(pα) =
∏
p|n

2 = 2ω(n).

(continued on next page)



2. Define N(n) to be the number of solutions of the congruence x2 ≡ −1 (mod n). Recall that
N(n) is a multiplicative function, by the Chinese remainder theorem.

(a) Write down all the values of N(pα).
(b) Define G(n) = (N ∗ s)(n). Find a formula for G(n).
(c) Find a function g(n) such that G(n) = (g ∗ 1)(n).
(d) Show that

G(n) = #{d | n : d ≡ 1 (mod 4)} −#{d | n : d ≡ 3 (mod 4)}.
(a) The answer depends on the congruence class of p modulo 4.

(i) When p ≡ 1 (mod 4), we know that −1 is a quadratic residue modulo p, and so x2 ≡
−1 (mod p) has two solutions. It’s easy to check that these solutions are nonsingular,
and so by Hensel’s lemma, there are two solutions modulo every power of p. In other
words, N(pα) = 2 when p ≡ 1 (mod 4).

(ii) When p ≡ 3 (mod 4), we know that −1 is a quadratic nonresidue modulo p, and so
x2 ≡ −1 (mod p) has no solutions. This implies that there are no solutions modulo
any multiple of p either. In other words, N(pα) = 0 when p ≡ 3 (mod 4).

(iii) When p = 2, we check by hand that x2 ≡ −1 (mod 2) has one solution and x2 ≡
−1 (mod 4) has no solutions. This implies that there are no solutions modulo any
multiple of 4 either. In other words, N(2) = 1, while N(2α) = 0 for all α ≥ 2.

(b) The function N(n) is multiplicative by the Chinese remainder theorem (since it counts the
roots of the polynomial x2 + 1 modulo n). Since N(n) and s(n) are both multiplicative,
their convolution G(n) must be multiplicative as well, and so it suffices to calculate G(n)
on prime powers.
(i) When p ≡ 1 (mod 4), we have (G ∗ s)(pα) =

(∑α−1
j=0 2s(p

j)
)
+ 1s(pα); we did this

calculation in problem #1 above, and the answer is α + 1. (In other words, on these
primes N “acts like” 2ω(n), and so G “acts like” 2ω(n) ∗ s(n) = τ(n) on these primes.)

(ii) When p ≡ 3 (mod 4), we have (G ∗ s)(pα) =
(∑α−1

j=0 0s(p
j)
)
+ 1s(pα) = s(pα),

which equals 1 if α is even and 0 if α is odd. (In other words, on these primes N “acts
like” ι(n), and so G “acts like” (ι ∗ s)(n) = s(n) on these primes.)

(iii) When p = 2, we have (G ∗ s)(pα) =
(∑α−2

j=0 0s(p
j)
)
+ 1s(pα−1) + 1s(pα) = 1, since

exactly one of α − 1 and α is even. (In other words, on these primes N “acts like”
µ2(n), and so by an example we did in class, G “acts like” (µ2 ∗s)(n) = 1(n) on these
primes.)
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(c) By the Möbius inversion formula, G(n) = (g∗1)(n) if and only if g(n) = (G∗µ)(n). Since
both G(n) and µ(n) are multiplicative functions, so is g(n), and it suffices to calculate
g(pα) for prime powers pα. In all cases, note that

(G ∗ µ)(pα) =
( α−2∑

j=0

0G(pj)

)
+ (−1)G(pα−1) + 1G(pα) = G(pα)−G(pα−1).

(i) When p ≡ 1 (mod 4), we have g(pα) = G(pα) − G(pα−1) = (α + 1) − α = 1. (In
other words, on these primes G “acts like” τ , and so g “acts like” τ ∗µ = (1∗ 1)∗µ =
1 ∗ (1 ∗ µ) = 1 ∗ ι = 1 on these primes.)

(ii) When p ≡ 3 (mod 4), we have g(pα) = G(pα)−G(pα−1), which equals 1 if α is even
and −1 if α is odd. (We haven’t seen this function before explicity, although we can
write it as (−1)Ω(n).)

(iii) When p = 2, we have g(pα) = G(pα) − G(pα−1) = 1 − 1 = 0. (In other words,
on these primes G “acts like” 1(n), and so g “acts like” (1 ∗ µ)(n) = ι(n) on these
primes.)

Note in particular that g(pα) equals 1 if pα ≡ 1 (mod 4), equals −1 if pα ≡ 3 (mod 4), and
equals 0 if pα is even. We can now check that these descriptions play well with multiplica-
tivity, so that g(n) itself equals 1 if n ≡ 1 (mod 4), equals −1 if n ≡ 3 (mod 4), and equals
0 if n is even.

(d) From part (c),

G(n) = (g ∗ 1)(n) =
∑
d|n

g(d)

=
∑
d|n


1, if d ≡ 1 (mod 4),
−1, if d ≡ 3 (mod 4),
0, if d is even


= #{d | n : d ≡ 1 (mod 4)} −#{d | n : d ≡ 3 (mod 4)}

as claimed. [One interesting side note: from its description in part (c), it’s obvious that
G(n) takes only nonnegative values. That’s much less obvious from this last formula;
indeed, this formula is the (mod 4) analog of the function τ1(n) − τ2(n) from practice
problem #III on Homework 7.)

Okay, so why all these funny functions? Theorem 3.21 of Niven, Zuckerman, & Montgomery tells
us that the number r(n) of proper representations of the integer n as a sum of two squares is exactly
4N(n), where N(n) is as defined in problem #2. (Indeed, we already knew that r(n) is nonzero if
and only if N(n) is nonzero, from Group Work #7.) It’s also pretty easy to show that the number
R(n) of (not necessarily proper) representations of the integer n as a sum of two squares is equal to
(r ∗ s)(n) = 4(N ∗ s)(n) = 4G(n). (See the proof of Theorem 3.21; in brief, every representation
of n as x2+y2 corresponds to a proper representation of its divisor n/d2 as (x/d)2+(y/d)2, where
d = (x, y).) So we have proved a classical result: the number of representations of n as a sum of
two squares is equal to 4 times (the number of divisors of n that are congruent to 1 (mod 4), minus
the number of divisors of n that are congruent to 3 (mod 4)).


