
Math 437/537—Group Work #9
Tuesday, November 19, 2024

Definition: A continued fraction is an expression of the form

x0 +
1

x1 +
1

x2 +
1

. . . +
1

xj

, (1)

where x0 ∈ R and x1, . . . , xj > 0. A shorthand notation for the expression (1) is ⟨x0;x1, x2 . . . , xj⟩.

1. Define the function f(x) = ⟨1; 3, 1, 5, x⟩ for x > 0.

(a) Show that f(x) =
〈
1; 3, 1, 5x+1

x

〉
.

(b) Part (a) gave a length-4 continued fraction that equals f(x). Find a similar length-3 con-
tinued fraction that also equals f(x); then, length-2; then, length-1.

(c) Evaluate the rational number ⟨0; 3, 1, 5, 100⟩.
(d) Verify the identities

⟨x0;x1, x2, . . . , xj⟩ = x0 +
1

⟨x1;x2, x3, . . . , xj⟩
and

⟨x0;x1, x2, . . . , xj⟩ =
〈
x0;x1, x2, . . . , xj−2, xj−1 +

1

xj

〉
.

(a) Bracketing the last two terms together,

f(x) = 1 +
1

3 +
1

1 +
1

5 +
1

x

= 1 +
1

3 +
1

1 +
1(

5 +
1

x

)
=

〈
1; 3, 1, 5 +

1

x

〉
,

which is the desired answer since 5 + 1
x
= 5x+1

x
.

(b) Similarly,〈
1; 3, 1,

5x+ 1

x

〉
= 1 +

1

3 +
1

1 +
1

5x+1
x

= 1 +
1

3 +
1

1 + x
5x+1

= 1 +
1

3 +
1

6x+1
5x+1

=

〈
1; 3,

6x+ 1

5x+ 1

〉

and〈
1; 3,

6x+ 1

5x+ 1

〉
= 1 +

1

3 +
1

6x+1
5x+1

= 1 +
1

3 + 5x+1
6x+1

= 1 +
1

(18x+3)+(5x+1)
6x+1

=

〈
1;

23x+ 4

6x+ 1

〉



and〈
1;

23x+ 4

6x+ 1

〉
= 1 +

1
23x+4
6x+1

= 1 +
6x+ 1

23x+ 4
=

(23x+ 4) + (6x+ 1)

23x+ 4
=

〈
29x+ 5

23x+ 4

〉
.

(c) Since f(x) = ⟨1; 3, 1, 5, x⟩, we see that f(x)− 1 = ⟨0; 3, 1, 5, x⟩, and so by part (b),

⟨0; 3, 1, 5, 100⟩ = f(100)− 1 =
29 · 100 + 5

23 · 100 + 4
− 1 =

2905

2304
− 1 =

601

2304
.

(d) The first identity follows from just considering the huge (outermost) denominator in equa-
tion (1) as a continued fraction in its own right; the second identity follows from consider-
ing the second-to-last denominator xj−1+

1
xj

as a single real number, as we did for specific
numbers in parts (a) and (b).

2.

(a) Use the Euclidean algorithm to calculate (73, 26) and, at the same time, to show that
73
26

=
〈
2; 26

21

〉
=

〈
2; 1, 21

5

〉
= ⟨2; 1, 4, 5⟩.

(b) Find a continued fraction that equals −196
71

. Remember that x1, x2, . . . must be positive.

(a) Since 73 = 2 · 26 + 21, we have 73
26

= 2 + 21
26

= ⟨2; 26
21
⟩. Since 26 = 1 · 21 + 5, we have

26
21

= 1 + 5
21

and so ⟨2; 26
21
⟩ = ⟨2; 1, 21

5
⟩. Since 21 = 4 · 5 + 1, we have 21

5
− 4 + 1

5
and so

⟨2; 1, 21
5
⟩ = ⟨2; 1, 4, 5⟩. (These calculations also show that (73, 26) = (26, 21) = (21, 5) =

(5, 1) = 1, but that ends up not mattering so much here.)
(b) Encouraged by part (a), we use the Euclidean algorithm, remembering that the division

algorithm always returns a nonnegative remainder; so we must start by writing −196 =
−3 · 71 + 17, so that −196

71
= −3 + 17

71
= ⟨−3; 71

17
⟩. From here it’s more standard: 71 =

4 · 17 + 3, so 71
17

= 4 + 3
17

and ⟨−3; 71
17
⟩ = ⟨−3; 4, 17

3
⟩. Then 17 = 5 · 3 + 2, so 17

3
= 5 + 2

3

and ⟨−3; 4, 17
3
⟩ = ⟨−3; 4, 5, 3

2
⟩; then 3 = 1 · 2 + 1, so 3

2
= 1 + 1

2
and ⟨−3; 4, 5, 3

2
⟩ =

⟨−3; 4, 5, 1, 2⟩.

For problem #3, all continued fractions will have integer entries.

3. Define α = ⟨x0;x1, . . . , xj⟩ and β = ⟨y0; y1, . . . , yk⟩.
(a) Suppose x0 ̸= y0. When is α < β?
(b) Suppose x0 = y0 but x1 ̸= y1. When is α < β?
(c) Suppose x0 = y0 and x1 = y1 but x2 ̸= y2. When is α < β? Generalize.
(d) Suppose that j < k and that x0 = y0, x1 = y1, . . . , xj = yj . When is α < β?
(e) Evaluate the rational number ⟨0; 3, 1, 5, 99, 1⟩. Does this affect your answer to part (d)?

(a) One key fact is that if ⟨z1; z2, . . . , zm⟩ is a continued fraction with positive integer entries
zi, then 1/⟨z1; z2, . . . , zm⟩ is between 0 and 1. The short version is: ⟨z1; z2, . . . , zm⟩ is z1
plus something positive, and z1 ≥ 1. (A more rigorous version would establish this fact by
induction on the length of the continued fraction.) In particular, α = x0+1/⟨x1;x2, . . . , xj⟩
is between x0 and x0 + 1, while β = y0 + 1/⟨y1; y2, . . . , yk⟩ is between y0 and y0 + 1.
Therefore, if x0 < y0, then x0 ≤ y0 − 1 and so α < β; on the other hand, if x0 > y0, then
x0 ≥ y0 + 1 and so α > β.

(continued on next page)



(b) Assuming that x1 ̸= y1, by part (a) we have ⟨x1;x2, . . . , xj⟩ < ⟨y1; y2, . . . , yk⟩ if and
only if x1 < y1. Since α = x0 + 1/⟨x1;x2, . . . , xj⟩ and β = y0 + 1/⟨y1; y2, . . . , yk⟩ =
x0 + 1/⟨y1; y2, . . . , yk⟩, we conclude that ⟨x1;x2, . . . , xj⟩ < ⟨y1; y2, . . . , yk⟩ if and only if
α > β (since the reciprocal reverses the inequality).

(c) Assuming that x2 ̸= y2, by part (a) we have ⟨x2;x3, . . . , xj⟩ < ⟨y2; y3, . . . , yk⟩ if and only
if x2 < y2. Since

α = x0+
1

x1 +
1

⟨x2;x3, . . . , xj⟩

and β = y0+
1

y1 +
1

⟨y2; y3, . . . , yk⟩

= x0+
1

x1 +
1

⟨y2; y3, . . . , yk⟩

,

we conclude that α < β if and only if x2 < y2 (since the double reciprocal ends up
preserving the original inequality direction).

In general: if x0 = y0, . . . , xℓ−1 = yℓ−1, but xℓ < yℓ, then α < β if ℓ is even, while
α > β if ℓ is odd. (Remember that this is only for continued fractions with integer entries.)
The sound bite reason is that an even number of reciprocals preserves inequalities, while
an odd number of reciprocals reverses inequalities.

This funny ordering on expressions of the form ⟨x0;x1, . . . , xj⟩ is called the alternating
lexicographic ordering, or alt-lex ordering for short. A pure lexicographic ordering is how
you order words in a dictionary (lexicon): you sort by first letter in ascending order, then
break ties by sorting by second letter in ascending order, and so on. In alt-lex ordering, we
sort by “first letter” (in this case, the value of x0) in ascending order as usual; but then we
break ties by sorting by “second letter” (x1) in descending order, then by x2 in ascending
order, by x3 in descending order, etc. This alt-lex ordering would correspond to a dictionary
where A came before B, while AT came before(!) AS, while ARE came before ARF, while
ARES came before(!) AREA, and so on.

(d) The answer is that α < β when j is even, while α > β when j is odd. One way to see this
is to compare α = ⟨x0;x1, . . . , xj⟩ to

β = ⟨y0; y1, . . . , yk⟩ =
〈
x0;x1, . . . , xj−1, ⟨xj; yj+1, . . . , yk⟩

〉
and use the above arguments to compare xj with ⟨xj; yj+1, . . . , yk⟩. Another (slightly fishy)
way to see this is to write α = ⟨x0;x1, . . . , xj⟩ = ⟨x0;x1, . . . , xj,∞⟩ (check this!) and
then use part (c) directly.

(e) By the second identity in #1(d), we see that

⟨0; 3, 1, 5, 99, 1⟩ =
〈
0; 3, 1, 5, 99 +

1

1

〉
= ⟨0; 3, 1, 5, 100⟩ = 601

2304

by #1(c). But this makes us realize that there is one exception to the general statement in
part (c): it is possible for x0 = y0, . . . , xℓ−1 = yℓ−1, but xℓ < yℓ, and yet α = β: namely,
the two continued fractions

⟨x0;x1, . . . , xj−1, xj⟩ and ⟨x0;x1, . . . , xj−1, xj − 1, 1⟩
are equal. It’s not hard to show that this is the only such exception; otherwise, distinct
continued fractions (with integer entries) are indeed unequal.


