
Math 539
Stuff I Learned

Prompted by my confusion near the end of class on Wednesday, November 30, I went
ahead and looked things up about algebraic numbers on the unit circle. Writing up these
comments might be randomly helpful to you, but really I’m doing it to cement my own
newfound understanding.

DEFINITIONS AND BACKGROUND. A complex number is algebraic if it is the root of some
polynomial with integer coefficients (not identically zero). Every algebraic number has
a minimal polynomial of smallest degree (unique up to scaling by integers); this minimal
polynomial is irreducible over Q, and its degree is called the degree of the algebraic num-
ber.

If α is an algebraic number of degree d, then the field Q(α) is a d-dimensional vector
space over Q; in particular, any d + 1 distinct powers of α are linearly dependent over Q.
Applying this fact to 1,αk,α2k, . . . ,αdk, this implies that for every integer k, the power αk

is an algebraic number of degree at most d.

The conjugates of an algebraic number are the roots of its minimal polynomial (including
the number itself).

The set of all algebraic numbers is a subfield of C, in fact the smallest algebraically closed
subfield; it is called the algebraic closure of the rational numbers. It is a countable set, since
the set of all polynomials with integer coefficients is countable.

A number is an algebraic integer if it is the root of some monic polynomial with integer
coefficients, or equivalently if its minimal polynomial can be chosen to be monic. The set
of all algebraic integers forms a subring of C; it is a dense subset of C.

Let sn,m denote the mth symmetric polynomial in n variables: if A is a set of n complex
numbers (not necessarily distinct), then

sn,m(A) = ∑
B⊂A
|B|=m

∏
b∈B

b.

So for example, s5,3({ti}) = t1t2t3 + t1t2t4 + t1t2t5 + · · ·+ t3t4t5, and sn,1 is just the sum
of its n arguments and sn,n is the product of its n arguments.

Let D = {z ∈ C : |z| ≤ 1} denote the unit disk and S = {z ∈ C : |z| = 1} the unit circle.

KRONECKER’S THEOREM. Suppose that α is an algebraic integer such that all of the conjugates
of α lie within D. Then α is a root of unity.

Note that the primitive mth roots of unity, e2π i`/m where (`, m) = 1, are all the conjugates
of one another, and hence roots of unity do satisfy the hypothesis of the theorem. Note
also that the theorem fails for algebraic numbers, since we can just take any algebraic
number and divide it by a huge integer to force all of its conjugates to lie in D.



PROOF (courtesy of Vishaal). Let p(t) be the minimal polynomial of α, and let d be the
degree of p(t). If α = α1, . . . ,αd are the roots of p(t), then

p(t) = xd − sd,1({αi})xd−1 + sd,2({αi})xd−1 − · · ·+ (−1)dsd,d({αi}).

Now each |αi| ≤ 1, and so sd, j({αi}) is the sum of (d
j) ≤ 2d terms each bounded in

modulus by 1. Therefore p(t) belongs to the finite set F of monic polynomials of degree d
each of whose coefficients is an integer bounded in absolute value by 2d.

Now the conjugates of αk are just αk
i (1 ≤ i ≤ d). Therefore the same argument applies,

showing that the minimal polynomial of each αk is in F as well. Since F is a finite set, we
can find a polynomial f (t) ∈ F that is the minimal polynomial of at least d + 1 powers of
α. But f (t) has degree d, and so two of these powers of α coincide, which means that α is
a root of unity.

(We’ve glossed over the fact that αk might in fact be an algebraic integer of degree lower
than d, in which case its conjugates are still αk

i but now these kth powers of conjugates are
not distinct. The details can be worked out.) �

However, it is false that an algebraic integer on S must be a root of unity. One important
class of counterexamples is related to Salem numbers: An algebraic integer, not in D, is a
Salem number if all of its other conjugates are in D. It can be shown that a Salem number
must have even degree d ≥ 4 and that one of its conjugates lies in D \ S but the rest of its
conjugates lie on S. Therefore these remaining d − 2 conjugates are algebraic integers on
S that are not roots of unity. An example of two such algebraic integers is
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One can verify that these are on S. These are two of the roots of the irreducible polynomial
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the other two roots being
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In any case, the factor iaq1/2/τ(χ) in the functional equation for Dirichlet L-functions is
manifestly an algebraic number, but it does not in fact have to be an algebraic integer. The
simplest example uses the character χ (mod 5) for which χ(2) = i (and so χ(4) = −1 and
χ(3) = −i). This character is odd, so a = 1; and the quantity

iaq1/2

τ(χ)
=

i
√

5
e2π i/5 + ie4π i/5 − ie6π i/5 − e8π i/5

turns out to equal 4
√
−(3 + 4i)/5, more precisely the fourth root of −(3 + 4i)/5 that lies

in the first quadrant. This number is a root of the irreducible polynomial 5t8 + 6t4 + 5,
hence is not an algebraic integer.


