
Math 539
Comments on Homework #2

I. This is quite a typical problem for these sorts of methods. During the process
of using the hyperbola method, we encounter the necessity of understanding the
sums ∑n≤x(log n)/n and ∑n≤x τ(n)/n, each of which is a mini-problem in itself,
and that’s typical. For the latter sum, I saw successful evaluations both by writing
the summand as T−1τ = T−11 ∗ T−1 and using the hyperbola method again, and
also by computing ∫ x
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In either case, doing the hyperbola method on the original ∑n≤x(τ ∗ 1)(n) yields
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Note that the main terms actually don’t depend on y, as the first two can be sim-
plified to
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+ x(3γ − 1) log x =
x log2 x

2
+ x(3γ − 1) log x,

and this too is typical for the hyperbola method (the main terms shouldn’t depend
on the order in which we count things!). Finally, most of the terms in the error are
dominated by a couple important ones; in fact, the entire error is O

(
log y(x/

√
y +

y)
)
. We said in class that the quickest way to minimize this expression is not to use

calculus (which doesn’t even work out in this case), but to simply set the increasing
and decreasing terms equal to each other to choose the parameter y. This is typical
as well; in this particular case, solving x/

√
y = y yields y = x2/3, which minimizes

the size of the error term as O(x2/3 log x). Note in particular that choosing y =
√

x
is not always best.

V(a). The fact that
∫ x

1− f (t) dbtc =
∫ x

1− f (t) dt−
∫ x

1− f (t) dB1({t}) is immediate from Re-
ality Check IV, upon noting that btc = t− B1({t})− 1

2 .

V(b). Plugging f (t) = 1/t directly into part (a) yields the answer we want, except that
we have some unspecified constant C rather than the desired γ. However, just
subtracting the known asymptotic formula ∑n≤x 1/n = log x + γ + O(1/x) and
taking the limit immediately shows that C = γ without looking at the specific
expression for C.



VI(b). Many of you computed the values for τ1/2(pk) recursively by hand up to k = 4,
which is completely sufficient. I did want to mention, however, a way of calcu-
lating a formula for τ1/2(pk) all in one go. Given an arithmetic function f and a
prime p, the Bell series B f ,p(x) for f is the power series ∑

∞
k=0 f (pk)xk. While this

is defined for any arithmetic function f , it is most useful when f is multiplica-
tive, and especially when f (pk) depends only on k and not p. The important fact
about Bell series, which you should verify, is that B f ∗g,p(x) = B f ,p(x)Bg,p(x) for
any arithmetic functions f and g.

So in this case, we want τ1/2 ∗ τ1/2 = τ1 = 1. The Bell series for f = 1 is
simply B1,p(x) = ∑

∞
k=0 1xk = 1/(1 − x) independent of p. Therefore Bτ1/2 ,p(x)

should be a function that squares to 1/(1− x), namely ±1/
√

1− x. (Some of you
noticed that there were two possibilities, and I agree that choosing the one for
which τ1/2(1) = 1 is more natural.) Therefore from the binomial theorem for
(1− x)−1/2, we see that
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where we used (−1/2
k ) = (− 1

2)(− 3
2) . . . (− 2k−1

2 ) to obtain the final equality. This
yields the formula τ1/2(pk) = (2k

k )/4k.
In general, a similar argument yields τα(pk) = (−1)k(−α

k ) = (α+k−1
k ) for any

complex number α even—a fact I didn’t know until after I assigned this problem!

VII. In a sense, this problem and problem V from the first homework are the most
important problems so far, since they give practice in translating an imprecise idea
(that might come up while trying to solve some more complicated problem) into a
rigorous statement. In this case, the quantity to be considered is
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note in particular the denominator of the second fraction (the average value is the
sum of the values divided by the number of terms, which is not always simply x).

Also, a few students ran into trouble when switching the order of summation in
the double sum
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note that the (m, q) = 1 condition in the last sum is still necessary. Although the
asymptotic formula
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is easily derived by considering blocks of q consecutive integers, a way to get a
better error term is to write
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1 = ∑
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∑
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and switch the order of summation; you should verify that this gives an error term
of O(2ω(q)), which we now know (from the upper bound ω(q) � log q/ log log q)
is Oε(qε) for any ε > 0.

VIII. Note that we should demand 0 < α < 2 instead of 0 < α ≤ 2. Apparently the
function sin x in part (a) was so specific that all but one person did the problem by
hand (correctly) instead of the way I had intended, through integration by parts:∫ ∞
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The point of integrating by parts to show that the integral converges at ∞ is to use
the fact that sin oscillates so much that its integral (namely − cos) is bounded.

This is an exact analogue with the summation-by-parts solution to part (b): the
function χ oscillates so much that its summatory function S(x) = ∑n≤x χ(n) is
bounded, and hence∫ ∞
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In fact, this is precisely the proof of “Dirichlet’s Test” which one of you quoted
(and which I had never heard of—thanks for the tip!).

IX. The key to doing this problem (in the way I envisioned, at least) is to find and
exploit the identity

n
φ(n)

= ∑
d|n

µ2(d)
φ(d)

.

Two hints to look for an identity of the form n/φ(n) = ∑d|n f (d) might be: (1) the
function n/φ(n) is roughly constant, and so the function f (d) might be quite small,
which helps with evaluating sums; (2) n/φ(n) depends only upon the primes di-
viding n, not their multiplicities, and so the corresponding f (d) will be supported
on squarefree numbers.

Once we decide to look for such an identity, it’s best to look at one prime at a
time, since we’re dealing with multiplicative functions. We can use a recursive
method to guess or establish a pattern, or we can use the Bell series defined above
for a more systematic approach.



X(a). One nice way to see that f = r ∗ s is as follows. Define χk to be the character-
istic function of kth powers. Then the identites r = χ2 ∗ χ3 and s ∗ χ6 = e are
more or less obvious from the definitions of the functions involved. Therefore it is
equivalent to show that f ∗ χ6 = χ2 ∗ χ3. Moreover, all four functions in this last
expression are multiplicative, and so it suffices to show equality on prime powers.
This is easily done by hand or by considering Bell series as defined above.

X(c). If PF(x) denotes the number of powerfull integers up to x, then you proved in this
problem that

PF(x) =
ζ
( 3
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)
ζ(3)

x1/2 +
ζ
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)
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x1/3 + O
(
x1/5). (∗)

I just want to point out how remarkable this is! I went ahead and calculated
PF(x) for all values of x up to one million, and I challenge anyone to be con-
vinced from that data that PF(x) is even asymptotic to any constant times x1/2.
Doing a linear regression on the log-log plot gives the not-very-impressive guess
PF(x) ≈ 1.562x0.519.

Even if a guardian angel told us that PF(x) ∼ Ax1/2 + Bx1/3, a regression to find
the best-fitting constants in this formula gives (A, B) ≈ (2.1800,−1.5616), which
I doubt would immediately bring to mind the true constants(
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)
≈ (2, 1733,−1.4880).

(You did know that ζ( 2
3) was negative, right?) Yet when tested against the asymp-

totic formula (∗), which you derived by hand in a couple of pages, the data reveals
that the error term in (∗) is in fact bounded in absolute value by five in this range.

(In case anybody cares, there are 2,027 powerfull numbers up to 106; the 2,027th
is of course one million itself, while the 2,026th one is the less well-known 998,784 =
2733172.)


