
Math 539
Comments on Homework #3

I(a). What I was thinking, when I originally wrote the problem with the erroneous fac-
tor of π2/6, was the bound on σ(n) for squarefree n, which turns out to be:

µ2(n)σ(n) <
6
π2 eγn log log n + O(n).

In fact this is even easier to establish than the problem you were given: the key is
that for squarefree n, we have
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However, this does point something out: proving that σ(n) is sometimes as large
as eγn log log n + O(n) might not be easy, because we’ll never get such large val-
ues of σ(n) by restricting to squarefree n. Here we miss by a factor of 1/ζ(2); if
we broaden our criterion but still restrict to integers n that are not divisible by a
nontrivial kth power, then an equally straightforward argument yields the upper
bound (1/ζ(k))eγn log log n + O(n).

So to show that the upper bound given in this problem is best possible, we do
need to look at numbers that are quite non-squarefree—in fact, numbers that are
divisible by arbitrarily high powers. Still, some reasonably compact and simply-
defined numbers should do the trick. Two choices that can be used to finish this
problem off (there are surely others) are to choose products of primes whose expo-
nents:
• gradually decrease as p grows, such as ∏p≤y pblog x/ log pc; or
• are large for small p and then abruptly shrink, such as ∏p≤z pk

∏z<p≤y p,
where k and z go to infinity but suitably slowly compared to y.

I(b). As you know, this problem boils down to finding the nonnegative integer k that
maximizes the function fε,p(k) = (k + 1)/pkε. One can certainly do this by look-
ing at f ′ε,p(x), finding the positive real number that maximizes the function, and
then trying to decide which nearby integer to look at. However, don’t forget the
discrete version of the derivative, namely the difference! Determining where the
expressions fε,p(k) − fε,p(k ± 1) are positive immediately shows that the optimal
value of k is k = b(pε − 1)−1c.

As a side note: the primes between (3/2)1/ε and 21/ε played an important role
(these are the ones for which k = 1 is optimal), and this comprises most of the
relevant primes, since the lower bound is the αth power of the upper bound where
α = log(3/2)/ log 2. Would it surprise you to know that I have the fact α ≈ 7/12
stored in my head? (In fact the approximation is good to within 0.3%.) The reason
I know this comes from music, of all places! An octave consists of two notes whose
frequencies have a ratio of 2 : 1, whereas a perfect fifth consists of two notes whose
frequencies have a ratio of 3 : 2. The entire foundation of our musical notation
system, with twelve semitones per octave, is based on the mathematical fact that
twelve perfect fifths is approximately the same as seven octaves; and this in turn
is a consequence of the approximation log(3/2)/ log 2 ≈ 7/12.



II(c). The fact that τ(n) = (log n)log 2+o(1) for almost all n, together with the fact that
τ(n) is about log n on average, shows that the average value is being influenced
by relatively few (density 0, in other words) abnormally large values of τ . One of
the problems on Homework #5 will explore this idea in greater detail.

VI. Most people got this problem essentially correct, and many shrewdly used the fact
that

F′(0) = F(0) · F′(0)
F(0)

= F(0) · d(log F(z))
dz
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z=0

to reduce the problem to calculating the derivative at 0 of the infinite series
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Nobody got this problem 100% correct, however: it is a subtle point to justify that
d
dz(log F(z)) can be calculated by taking the term-by-term derivative of the right-
hand side.

The main theorem in this regard is: If F(x) = ∑
∞
k=1 gk(x) converges uniformly

on a domain D, and if each gk(x) is differentiable on D and if ∑
∞
k=1 g′k(x) converges to

some function uniformly on D, then that limit function is the derivative of the original
function, that is, F′(x) = ∑

∞
k=1 g′k(x). (There’s a similar theorem for the situation

F(x) =
∫ ∞

0 f (x, y) dy.)
To justify differentiating under the summation sign, therefore, we need that the

two series both converge uniformly. Here’s an example, communicated to me by
Glen Pugh, that shows that such an assumption really is necessary. Set

gk(x) =
x

1 + (k − 1)2x2 −
x

1 + k2x2 .

Then we have the telescoping sum
n

∑
k=1
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1 + n2x2 ,

and so

F(x) =
∞
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)
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for all real numbers x. Furthermore, the convergence of the infinite sum defining F
is uniform on every set of the form R \ (−ε,ε), as the difference between the value
of the partial sum, x− x/(1 + n2x2), and the limit value x is uniformly bounded by
ε/n2 on such a set. However, the convergence of the sum defining F is not uniform
on R, in particular not uniform near x = 0. (Note that the point x = 0 itself is not
a problem at all, as gk(0) = 0 for all k.)

However, we have

g′k(x) =
1 − (k − 1)2x2

((k − 1)2x2 + 1)2 −
1 − k2x2

(k2x2 + 1)2 ,



and hence we have another telescoping sum
n

∑
k=1

g′k(x) = 1 − 1 − n2x2

(n2x2 + 1)2 .

Again, these partial sums converge uniformly on sets of the form R \ (−ε,ε), and
so the theorem above implies that
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∞
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k=1

g′k(x) = lim
n→∞
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)
= 1

on any such set, in particular for any x 6= 0. However,∞
∑
k=1

g′k(0) = lim
n→∞

(
1 − 1 − n202
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)
= lim

n→∞ 0 = 0 6= 1 = F′(0).

(Alternatively, ∑ g′k(0) = ∑ 0 = 0.) One might complain that differentiating under
the summation sign is almost right . . . but in this very problem we’re concerned
with F′(0)! So we really do need some information about uniform convergence.

Back to the problem at hand: it is not hard to show that on the unit disk, for
example, both the right-hand side of (∗∗) and its term-by-term derivative

∑
p

1
(p − z)(p − z + 1)

converge uniformly: both tails can be shown to be O(∑p>y 1/p2) uniformly for
|z| ≤ 1. Therefore in this case, differentiation under the summation sign is permis-
sible.

VIII. I note only that we can factor 57-digit numbers with ease (my office computer
factored a dozen randomly-chosen ones and the longest running time was under
90 seconds); hence once we find the 56-digit candidate n for a solution to φ(6n +
1) < φ(6n), we can bypass the estimates analogous to those in my paper and
simply compute φ(6n + 1) and φ(6n) exactly.

IX(c). The last question is intentionally misleading. Let’s remind ourselves again: a func-
tion f (n) has average order g(n) if ∑n≤x f (n) and ∑n≤x g(n) grow at the same rate.
So to see how good a fit a potential function g(n) is to be the average order of f (n),
we need to calculate g(n). Considering functions of the form log n + C as candi-
dates for the average order of τ(n), we calculate (using integrals as upper and
lower bounds):

∑
n≤x

(log n + C) = x log x + (C − 1)x + O(log x)

and
∑
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(log n + C)
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x
)

= 1
2 x log x +

(C
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3
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)
x + O(log x).

So although every function of the form log n + C is a reasonably good choice for
the average order of τ(n), the function log n + 2γ (not log n + 2γ − 1 and not
log n + 2γ − 3

2 ) is the best choice of them all, since it matches the secondary main
terms as well.


