
Math 539
Comments on Homework #4

GENERAL COMMENT: If we bound part of a summand or integrand, we need to
add absolute values on the other parts. For example, if A(n) � 1, then we have
∑

∞
n=1 A(n) f (n) � ∑

∞
n=1 | f (n)|, but not necessarily ∑

∞
n=1 A(n) f (n) � ∑

∞
n=1 f (n);

if A(t) � A(x) for all t ≤ x, then we have
∫ x

0 A(t) f (t) dt � A(x)
∫ x

0 | f (t)| dt,
but not necessarily

∫ x
0 A(t) f (t) dt � A(x)

∫ x
0 f (t) dt; if 0 ≤ an ≤ bn, then we

have ∑n≤x ann−s � ∑n≤x bnn−σ , but not necessarily ∑n≤x ann−s � ∑n≤x bnn−s;
and so on. Moreover, even if A(x) ≤ B(x) are both nonnegative functions, the
reasonable-seeming Riemann-Stieltjes inequality

∫ b
a A(x) dG(x) ≤

∫ b
a B(x) dG(x)

is false in general! One would need G(x) to be increasing, for example. The moral
of the story: think twice, estimate once.

I. I just wanted to point out that this problem is another instance of the analytic tenet
“you can’t have half a pole”. If the Dirichlet series had a pole somewhere on that
vertical line, then near the pole ρ the function would have to blow up in size like
(s− ρ)−k for some positive integer k; k = 1

2 is not a possibility. (Note that for non-
pole singularities such behavior is quite possible—the square root and logarithm
functions near 0 are examples, as are essential singularities like e−1/z. But not
poles.)

II. At first I too had a hard time seeing why
∫ ∞

1 {x}/xσ+1 dx < 1
2σ (getting 1

σ as the
upper bound is easy from {x} ≤ 1). It’s not just that {x} is 1

2 on average; we need
to somehow use that {x} is less than 1

2 first and greater than 1
2 next, and since it’s

multiplied by a decreasing function, the less-than-1
2 parts should dominate. One

way to carry this out is to write, for each unit interval [n, n + 1],∫ n+1

n

{x} − 1/2
xσ+1 dx =

∫ 1

0

y− 1/2
(n + y)σ+1 dy

=
∫ 1/2

0

y− 1/2
(n + y)σ+1 dy +

∫ 1

1/2

y− 1/2
(n + y)σ+1 dy

=
∫ 1/2

0

y− 1/2
(n + y)σ+1 dy +

∫ 1/2

0

1− z− 1/2
(n + 1− z)σ+1 dz

=
∫ 1/2

0
(y− 1/2)

(
1

(n + y)σ+1 −
1

(n + 1− y)σ+1

)
dy ≤ 0.

Another, slicker way is to notice that f (y) =
∫ y

1 {t} dt ≤ (y − 1)/2 for all y ≥ 1
(consider each unit interval separately), so we can integrate by parts:∫ ∞

1

{x}
xσ+1 dx =

f (x)
xσ+1

∣∣∣∣∞
1

+ (σ + 1)
∫ ∞

1

f (x)
xσ+2 dx;



the boundary terms are both 0, and the new integrand is nonnegative and

(σ + 1)
∫ ∞

1

f (x)
xσ+2 dx ≤ (σ + 1)

∫ ∞
1

(x− 1)/2
xσ+2 dx

=
σ + 1

2

(
− 1

σxσ
+

1
(σ + 1)xσ+1

)∣∣∣∣∞
1

=
σ + 1

2

(
1
σ
− 1

σ + 1

)
=

1
2σ

.

The moral of this story: to take advantage of cancellation, put the sum/integral
that has the cancellation in the innermost position. Summation/integration by
parts often accomplishes this.

V. It might seem that the most natural way to do this problem is to prove that for all
σ ≤ 0, the series A(σ) converges if and only if R(x) � xσ , but this equivalence is
false. As it happens, the convergence of A(σ) does imply that R(x) = o(xσ) even;
however, R(x) � xα implies only that A(α +ε) converges for every ε > 0, but not
necessarily that A(α) itself converges. Fortunately, the abscissa of convergence
and the quantity described in the question are both infema, and so we only have
to show that

A(σ +ε) converges for every ε > 0 ⇐⇒ R(x) � xσ+ε for every ε > 0.

(Technical note: according to the definition of infemum, we don’t need the above
statements for every ε > 0, but only for a sequence of ε tending to 0 from above.
Fortunately, however, if A(σ0) converges then A(σ) converges for every σ > σ0,
and similarly for upper bounds for R(x); therefore we don’t have to speak in terms
of sequences of ε—either it works for all ε > 0 or it stops working below some
threshhold ε.)

VI. Many of you experimented with the tables of values ofσ(n)2 andσ(n2) and related
multiplicative functions on prime powers, finding by hand convolution identities
that eventually reduced the problem to recognizing familiar Euler products. This
is a perfectly reasonable approach. I did want to remind you that there is a more
“mindless” approach, namely simply to compute the Bell series for these func-
tions. For example, looking at σ(n)2:

Bp(x) =
∞
∑
k=0

σ(pk)2xk =
∞
∑
k=0

(
pk+1 − 1

p− 1

)2

xk

=
1

(p− 1)2

∞
∑
k=0

(
p2k+2 − 2pk+1 + 1

)
xk

=
1

(p− 1)2

(
p2

1− p2x
− 2p

1− px
+

1
1− x

)
= · · · = 1 + px

(1− x)(1− px)(1− p2x)



after a lot of algebra. Therefore the factor corresponding to p in the Euler product
of ∑

∞
n=1 σ(n)2n−s is

Bp(p−s) =
1 + p1−s

(1− p−s)(1− p1−s)(1− p2−s)
=

1− p2−2s

(1− p−s)(1− p1−s)2(1− p2−s)
,

whence∞
∑

n=1
σ(n)2n−s = ∏

p
Bp(p−s) = ∏

p

1− p2−2s

(1− p−s)(1− p1−s)2(1− p2−s)
=

ζ(s)ζ(s− 1)2ζ(s− 2)
ζ(2s− 2)

.

VII. Most of you gave the solution I had in mind, namely showing that η(s) +ζ(s +α)
had σc = 1 −α and σa = 1. However, the argument that σa = 1 (for example)
was flawed in some solutions. Showing that ∑

∞
n=1

(
(−1)n−1 + n−α

)
n−s converges

absolutely for σ > 1 does not prove that σa = 1, but only that σa ≤ 1. In general,
the mistake boils down to claiming that σa( f + g) = max{σa( f ),σa(g)} rather
than the accurate σa( f + g) ≤ max{σa( f ),σa(g)}. Note that the equality is prov-
ably true (I believe) if σa( f ) 6= σa(g), but certainly not in general: f + g might be
constant, for example.

VIII(b). Several of you went through a full inductive derivation parallel to the solution of
part (a), but one can reduce this case directly to the result in part (a) as follows.
Suppose that C and d are chosen so that | f (n)| ≤ Cnd; then it can be checked that
the function

g(n) =
f (n)
f (1)

n−d− log(C/| f (1)|)
log 2

satisfies g(1) = 1 and |g(n)| ≤ 1 for all n ∈ N. (This is just a specific way of in-
creasing the d enough to overcome the unwanted constant C; increasing it enough
so that the inequality holds for n = 2 is the worst case.) Part (a) shows that g−1(n)
is of polynomial growth, and it follows easily that f−1(n) is then of polynomial
growth, since the convolution inverse of λ f (n)nk is λ−1 f−1(n)nk.

VIII(c). The point here is that an arithmetic function f (n) having polynomial growth is
equivalent to the Dirichlet series ∑

∞
n=1 f (n)n−s converging in some half-plane (that

is, having σc < ∞): polynomial growth implies convergence for large σ by com-
parison to the sum ∑

∞
n=1 n−p, while convergence for some s implies the growth

bound f (n) � nσ since the terms in a convergent series must tend to 0.


