
Math 539
Homework #3

due Wednesday, November 2, 2005 at 10 AM

Reality check problems. Not to write up; just ensure that you know how to do them.

I. Prove that

∏
p≤x

(
1− 1

p

)
=

1
eγ log x

+ O
(

1
log2 x

)
.

II. Prove that

θ(x) = ψ(x) + O(
√

x) and π(x) =
ψ(x)
log x

(
1 + O

(
1

log x

))
.

Homework problems. To write up and hand in.

I. (a) Prove that

σ(n) ≤ π2eγ

6
n log log n + O(n),

showing that the main term is best possible.
(b) Prove that

log τ(n) ≤ log 2 · log n
log log n

+ O
(

log n
log log2 n

)
,

showing that the main term is best possible.

II. (a) Prove that 2ω(n) ≤ τ(n) ≤ 2Ω(n) for all n ≥ 1. What are the cases of equality
for each inequality?

(b) We have seen that both ω(n) ∼ log log n and Ω(n) ∼ log log n hold for al-
most all integers n. Therefore by part (a), it seems we could conclude that
τ(n) ∼ 2log log n = (log n)log 2 for almost all integers n. Why is this deduction
invalid?

(c) Show that the correct deduction is that τ(n) = (log n)log 2+o(1) for almost all
integers n. We have also seen that the average order of τ(n) is log n. How can
these two facts be reconciled?

III. Suppose that f is an arithmetic function whose average value exists and is nonzero.
Prove that you can “change f at one prime” to make the average value anything
you want. More specifically, prove that for any prime p and any A ∈ R, there is an
arithmetic function g whose average value is A that satisfies g(n) = f (n) for every
n with (p, n) = 1. (Note: it is not assumed that f is multiplicative.)



IV. In place of the trivial (but effective!) choice D = {1, 2}, a1 = 1, a2 = −2, Cheby-
shev chose D = {1, 2, 3, 5, 30} and a1 = a30 = 1, a2 = a3 = a5 = −1. Using this
choice or your own, compute upper and lower bounds forψ(x) using Chebyshev’s
method. For this problem, instead of using O-notation, keep explicit constants in all
your upper and lower bounds.

V. (a) Verify that ψ(x) ≥ θ(x) ≥ ψ(x)− 2ψ(
√

x ).
(b) Using the Chebyshev-type bounds on ψ(x) from the previous problem, ob-

tain explicit upper and lower bounds for θ(x). From these bounds, derive
“Bertrand’s postulate”: for every x ≥ 2, there is always a prime in the interval
[x, 2x].

(c) What is the smallest constant K for which “there is always a prime in [x, Kx]”
is true for every x ≥ 2? Prove it.

VI. Rényi proved the following beautiful theorem about the set Sk of numbers n for
which Ω(n)−ω(n) = k: the set Sk has a natural density dk, and dk is the coefficient
of zk in the power series expansion around 0 of the function

F(z) = ∏
p

(
1− 1

p

)(
1 +

1
p− z

)
.

Confirm that Rényi’s theorem gives 6/π2 as the density of squarefree numbers.
What is the density of the numbers that are squarefree except for a single squared
prime factor?

VII. By “the m× n multiplication table” we mean the m× n array whose (i, j)-th entry
is i j. Note that the m × n multiplication table has mn entries, each of which is a
positive integer not exceeding mn, but there are repetitions due to commutativity
and to multiple factorizations of various entries. Define D(m, n) to be the number
of distinct integers in the m× n multiplication table.
(a) Erdős gave an ingenious argument showing that D(n, n) = o(n2). The idea is

as follows: by the Erdős-Kac Theorem, almost all integers up to n have about
log log n prime factors (counted with mutiplicity), That means that almost all
of the entries in the n × n multiplication table have about 2 log log n prime
factors. But these entries do not exceed n2, and almost all integers up to n2

only have about log log n2 = log log n + log 2 prime factors. Therefore almost
all integers up to n2 must be missing from the n× n multiplication table. Turn
this sketch into a rigorous proof. What is the smallest function f (n) for which
you can prove that D(n, n) � f (n)?

(b) Generalize as best as you can to D(m, n). How small can m be as a function of
n so that D(m, n) = o(mn) still?

VIII. Find the smallest positive integer n such that φ(6n + 1) < φ(6n). It is probably a
valuable hint to know that I have a paper titled The smallest solution ofφ(30n + 1) <
φ(30n) is . . . (http://www.math.ubc.ca/∼gerg/papers/abstracts/SS.html). You
are certainly allowed to use a computer for this problem; simply report enough de-
tail to convince me that you did indeed fully derive the answer.



IX. Define ∆(x) = ∑n≤x τ(n)− (x log x + (2γ − 1)x).
(a) Show that

∆(x) = −2 ∑
n≤
√

x
B1

({
x
n

})
+ O(1),

where B1 was defined on Homework #2.
(b) Prove that ∫ x

0
∆(t) dt � x.

(c) Conclude that

∑
n≤x

τ(n)
(

1− n
x

)
=

1
x

∫ x

0

(
∑
n≤t
τ(n)

)
dt = 1

2 x log x +
(
γ − 3

4

)
+ O(1).

Does this imply that the “right” average order for τ(n) is log x + 2γ − 3
2 in-

stead of log x + 2γ − 1?

Open-ended problem. To write up and hand in if you want to (“extra credit”).

X. In my paper Dimensions of the spaces of cusp forms and newforms on Γ0(N) and Γ1(N)
(http://www.math.ubc.ca/∼gerg/papers/abstracts/DSCFN.html), I found that
certain functions related by convolutions had average values that differed by fac-
tors of the form ζ(2) and ζ(3). See Theorems 8 and 9 for the average orders, and
see Theorems 1, 4, 13, and 14 and Propositions 11 and 15 for formulas for the g
functions; in each case, everything except the s function winds up in the error
term, so Theorems 8 and 9 are really statements about the average order of the s
functions.

This motivates the following problem: Given an arithmetic function f (you may
assume multiplicativity if you like) whose average value is C, formulate conditions
under which the convolution f ∗ τk has average value Cζ(m)k for all k ∈ N. (Here
m can depend upon the conditions you formulate.) Does your statement hold for
k ∈ −N as well? What is the interpretation of τk for negative integers k?


