Math 539 Homework #2

due Friday, January 29, 2010 at the beginning of class

I. Recall that $li(x) = \int_2^x \frac{dt}{\log t}$ and that $\pi(x) = \#\{p \le x \colon p \text{ is prime}\}.$ (a) Let K be a positive integer. Show that

$$\operatorname{li}(x) = \frac{x}{\log x} + \frac{x}{\log^2 x} + 2\frac{x}{\log^3 x} + \dots + (K-1)!\frac{x}{\log^K x} + O_K\left(\frac{x}{(\log x)^{K+1}}\right).$$

Hint: you can estimate an integral by splitting the interval of integration at some middle point.

- (b) Starting from Mertens's formula (Montgomery and Vaughan, Theorem 2.7), use partial summation to see what can be deduced about $\pi(x)$ in this way. Can you prove in this way that $\pi(x) \ll \operatorname{li}(x)$? that $\pi(x) \gg \operatorname{li}(x)$? that $\pi(x) \sim \operatorname{li}(x)$? (The answer is "yes" for at least one of these, and "no" for at least one.)
- II. Define $\Phi(s) = \sum_{n=1}^{\infty} \phi(n) n^{-s}$.
 - (a) Show directly from the definition of σ_c that the abscissa of convergence of $\Phi(s)$ is $\sigma_c = 2.$
 - (b) For $\sigma > 2$, write $\Phi(s)$ in terms of the Riemann zeta function.
- III. Define $F(x) = \sum_{n \le x} \frac{\phi(n)}{n}$ and $Q(x) = \sum_{n \le x} \mu^2(n)$. (Note: Q(x) is the number of squarefree integers not exceeding x.) Let y be a real number in the range $\log^2 x \le y \le x$.
 - (a) Show that $F(x) F(x y) \sim \frac{6}{\pi^2} y$. (Hint: use the asymptotic formula we already know for F(x).) In other words, the average value of $\frac{\phi(n)}{n}$ is $\frac{6}{\pi^2}$ even over intervals around x as short as $\log^2 x$.
 - (b) Why does the same approach fail to prove that $Q(x) Q(x-y) \sim \frac{6}{\pi^2} y$?
- IV. Let f be an arithmetic function, and let σ_a be the abscissa of absolute convergence of its Dirichlet series $\sum_{n=1}^{\infty} f(n) n^{-s}$. Let $\varepsilon > 0$ be a constant.

 - (a) If $\sigma_a \ge 0$, show that $\sum_{d \le x} |f(d)| \ll_{\varepsilon} x^{\sigma_a + \varepsilon}$. (b) If $\sigma_a < 1$, show that $\sum_{d \ge x} |f(d)|/d \ll_{\varepsilon} x^{\sigma_a 1 + \varepsilon}$.
- V. (a) Find the smallest constant S such that $\sigma(n) < Sn \log \log n + O(n)$ for all positive integers n.
 - (b) Find the smallest constant T such that $\sigma(n) \leq T n^{21/20}$ for all positive integers n.
 - (c) Are there finitely many or infinitely many positive integers n for which $\sigma(n) \ge n^{21/20}$?
- VI. Define the *logarithmic density* of a set S of integers to be the following limit (if it exists):

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{\substack{n \le x \\ n \in S}} \frac{1}{n}.$$

Let S_3 be the set of all positive integers whose first (leftmost) digit is 3.

- (a) Suppose that the (regular) density of the set S exists and equals c. Show that the logarithmic density of S also exists and equals c.
- (b) Show that the density of S_3 does not exist.
- (c) Show that the logarithmic density of S_3 does exist, and calculate it.

(continued on next page)

VII. (a) Prove that

$$\sum_{m \le x} \sum_{\substack{n \le x \\ (m,n)=1}} 1 = \sum_{d \le x} \mu(d) \left\lfloor \frac{x}{d} \right\rfloor^2.$$

- Hint: what does $\sum_{d|(m,n)} \mu(d)$ equal? (b) Write down the rigorous definition of what a number theorist refers to as "the probability that two randomly chosen integers are relatively prime to each other", and calculate it. (Remark: you should be able to see that this is the same question as "the probability that a randomly chosen lattice point does not have any other lattice points on the line segment between it and the origin".)
- VIII. (a) Prove that the average value of $n/\phi(n)$ is $\zeta(2)\zeta(3)/\zeta(6)$.
 - (b) Let p be a prime, and let $\nu_p(n)$ denote the power of p in the factorization of n; for example, $\nu_3(8) = 0$, $\nu_3(12) = 1$, and $\nu_3(18) = 2$. Prove that the average value of $\nu_p(n)$ is 1/(p-1).
 - IX. (a) What is wrong with the following beginning of an attempt to investigate the sum $\sum_{n < x} \omega(n)^2$?

$$\sum_{n \le x} \omega(n)^2 = \sum_{n \le x} \left(\sum_{p|n} 1\right)^2 = \sum_{n \le x} \sum_{p_1|n} \sum_{p_2|n} 1 = \sum_{p_1 \le x} \sum_{p_2 \le x} \sum_{\substack{n \le x \\ p_1 p_2|n}} 1 = \sum_{p_1 \le x} \sum_{p_2 \le x} \left\lfloor \frac{x}{p_1 p_2} \right\rfloor$$

- (b) Correct this beginning of an attempt, and find an asymptotic formula (with error term) for $\sum_{n < x} \omega^2(n)$.
- X. Montgomery and Vaughan, Section 2.3, p. 63, #6
- XI. Find an asymptotic formula (with error term) for $\sum_{n \le x} d_3(n)$.
- XII. By "the $n \times n$ multiplication table" we mean the $n \times n$ array whose (i, j)-th entry is ij. Note that the $n \times n$ multiplication table has n^2 entries, each of which is a positive integer not exceeding n^2 , but there are repetitions due to commutativity and to multiple factorizations of various entries.

Define D(n) to be the number of *distinct* integers in the $n \times n$ multiplication table. Erdős gave an ingenious argument showing that $D(n) = o(n^2)$. The idea is as follows: by the Hardy–Ramanujan Theorem, almost all integers up to n have about $\log \log n$ prime factors. That means that almost all of the entries in the $n \times n$ multiplication table have about $2\log \log n$ prime factors. But these entries do not exceed n^2 , and almost all integers up to n^2 only have about $\log \log n^2 = \log \log n + \log 2$ prime factors. Therefore almost all integers up to n^2 must be missing from the $n \times n$ multiplication table.

Turn this sketch into a rigorous, quantitative proof: find an explicit function f(n), satisfying $f(n) = o(n^2)$, for which you can prove that $D(n) \ll f(n)$.

Bonus: Montgomery and Vaughan, Section 2.1, p. 41, #10. This problem is fully optional for you. (I tried for a little bit to do this one, but I couldn't. Can someone enlighten me?)