
Math 539 Homework #2
due Friday, January 29, 2010 at the beginning of class

I. Recall that li(x) =
∫ x

2
dt

log t
and that π(x) = #{p ≤ x : p is prime}.

(a) Let K be a positive integer. Show that

li(x) =
x

log x
+

x

log2 x
+ 2

x

log3 x
+ · · ·+ (K − 1)!

x

logK x
+OK

(
x

(log x)K+1

)
.

Hint: you can estimate an integral by splitting the interval of integration at some mid-
dle point.

(b) Starting from Mertens’s formula (Montgomery and Vaughan, Theorem 2.7), use par-
tial summation to see what can be deduced about π(x) in this way. Can you prove in
this way that π(x) � li(x)? that π(x) � li(x)? that π(x) ∼ li(x)? (The answer is
“yes” for at least one of these, and “no” for at least one.)

II. Define Φ(s) =
∑∞

n−1 φ(n)n−s.
(a) Show directly from the definition of σc that the abscissa of convergence of Φ(s) is

σc = 2.
(b) For σ > 2, write Φ(s) in terms of the Riemann zeta function.

III. Define F (x) =
∑

n≤x
φ(n)
n

and Q(x) =
∑

n≤x µ
2(n). (Note: Q(x) is the number of

squarefree integers not exceeding x.) Let y be a real number in the range log2 x ≤ y ≤ x.
(a) Show that F (x) − F (x − y) ∼ 6

π2y. (Hint: use the asymptotic formula we already
know for F (x).) In other words, the average value of φ(n)

n
is 6

π2 even over intervals
around x as short as log2 x.

(b) Why does the same approach fail to prove that Q(x)−Q(x− y) ∼ 6
π2y?

IV. Let f be an arithmetic function, and let σa be the abscissa of absolute convergence of its
Dirichlet series

∑∞
n=1 f(n)n−s. Let ε > 0 be a constant.

(a) If σa ≥ 0, show that
∑

d≤x |f(d)| �ε x
σa+ε.

(b) If σa < 1, show that
∑

d>x |f(d)|/d�ε x
σa−1+ε.

V. (a) Find the smallest constant S such that σ(n) < Sn log log n + O(n) for all positive
integers n.

(b) Find the smallest constant T such that σ(n) ≤ Tn21/20 for all positive integers n.
(c) Are there finitely many or infinitely many positive integers n for which σ(n) ≥ n21/20?

VI. Define the logarithmic density of a set S of integers to be the following limit (if it exists):

lim
x→∞

1

log x

∑
n≤x
n∈S

1

n
.

Let S3 be the set of all positive integers whose first (leftmost) digit is 3.
(a) Suppose that the (regular) density of the set S exists and equals c. Show that the

logarithmic density of S also exists and equals c.
(b) Show that the density of S3 does not exist.
(c) Show that the logarithmic density of S3 does exist, and calculate it.

(continued on next page)



VII. (a) Prove that ∑
m≤x

∑
n≤x

(m,n)=1

1 =
∑
d≤x

µ(d)

⌊
x

d

⌋2

.

Hint: what does
∑

d|(m,n) µ(d) equal?
(b) Write down the rigorous definition of what a number theorist refers to as “the probabil-

ity that two randomly chosen integers are relatively prime to each other”, and calculate
it. (Remark: you should be able to see that this is the same question as “the probability
that a randomly chosen lattice point does not have any other lattice points on the line
segment between it and the origin”.)

VIII. (a) Prove that the average value of n/φ(n) is ζ(2)ζ(3)/ζ(6).
(b) Let p be a prime, and let νp(n) denote the power of p in the factorization of n; for

example, ν3(8) = 0, ν3(12) = 1, and ν3(18) = 2. Prove that the average value of
νp(n) is 1/(p− 1).

IX. (a) What is wrong with the following beginning of an attempt to investigate the sum∑
n≤x ω(n)2?∑

n≤x

ω(n)2 =
∑
n≤x

(∑
p|n

1

)2

=
∑
n≤x

∑
p1|n

∑
p2|n

1 =
∑
p1≤x

∑
p2≤x

∑
n≤x
p1p2|n

1 =
∑
p1≤x

∑
p2≤x

⌊
x

p1p2

⌋
.

(b) Correct this beginning of an attempt, and find an asymptotic formula (with error term)
for
∑

n≤x ω
2(n).

X. Montgomery and Vaughan, Section 2.3, p. 63, #6

XI. Find an asymptotic formula (with error term) for
∑

n≤x d3(n).

XII. By “the n×nmultiplication table” we mean the n×n array whose (i, j)-th entry is ij. Note
that the n × n multiplication table has n2 entries, each of which is a positive integer not
exceeding n2, but there are repetitions due to commutativity and to multiple factorizations
of various entries.

Define D(n) to be the number of distinct integers in the n × n multiplication table.
Erdős gave an ingenious argument showing that D(n) = o(n2). The idea is as follows:
by the Hardy–Ramanujan Theorem, almost all integers up to n have about log log n prime
factors. That means that almost all of the entries in the n × n multiplication table have
about 2 log log n prime factors. But these entries do not exceed n2, and almost all integers
up to n2 only have about log log n2 = log log n+ log 2 prime factors. Therefore almost all
integers up to n2 must be missing from the n× n multiplication table.

Turn this sketch into a rigorous, quantitative proof: find an explicit function f(n), satis-
fying f(n) = o(n2), for which you can prove that D(n)� f(n).

Bonus: Montgomery and Vaughan, Section 2.1, p. 41, #10. This problem is fully optional for you.
(I tried for a little bit to do this one, but I couldn’t. Can someone enlighten me?)


