Math 539 Homework \#3

due Friday, February 12, 2010 at the beginning of class
I. Suppose that $1 \leq a \leq q$ and $(a, q)=1$. Prove that

$$
\sum_{\substack{p \leq x \\ p \equiv a(\bmod q)}} \frac{1}{p} \ll \frac{1}{a}+\frac{\log \log x}{\phi(q)}
$$

and that the term $\frac{1}{a}$ can be omitted if a is not a prime. The \ll-constant should be absolute (that is, independent of a and q). Hint: use partial summation and the Brun-Titchmarsh inequality.
II. Let $q \in \mathbb{N}$, let f and g be two real-valued functions defined on $\mathbb{Z} / q \mathbb{Z}$, and let g_{r} be defined by $g_{r}(n)=g(-n)$. Let $f \star g$ (not to be confused with the Dirichlet convolution $f * g$ of two arithmetic functions) denote the function defined on $\mathbb{Z} / q \mathbb{Z}$ by

$$
(f \star g)(n)=\frac{1}{q} \sum_{a(\bmod q)} f(a) g(n-a) .
$$

(a) Prove that $\widehat{f}_{r}(k)=\overline{\hat{f}}(k)$.
(b) Prove that $\widehat{(f \star g)}(k)=\hat{f}(k) \hat{g}(k)$.
(c) Define $h=f \star\left(f+f_{r}\right)$. Prove that $\hat{h}(k)$ has nonnegative real part for every $k \in \mathbb{Z} / q \mathbb{Z}$.
III. Let p be a prime, and let δ denote the characteristic function of the set of integers that are primitive roots $(\bmod p)$.
(a) Explain why we immediately know that there exist constants c_{χ} such that $\delta(n)=$ $\sum_{\chi(\bmod p)} c_{\chi} \chi(n)$ for every integer n.
(b) In the notation of part (a), prove that $c_{\chi}=\frac{1}{p-1} \sum_{g} \chi(g)$, where the sum is taken over all primitive roots $g(\bmod p)$. Note: I do mean $\chi(g)$, not $\overline{\chi(g)}$.
(c) BONUS: Prove that if χ has order b in the character group $(\bmod p)$, then $c_{\chi}=\frac{\phi(p-1)}{p-1} \frac{\mu(b)}{\phi(b)}$.
IV. (a) Write down all Dirichlet characters to the modulus 15; to the modulus 16. Indicate which of them are primitive characters.
(b) Montgomery and Vaughan, Section 9.1, p. 285, \#5
V. (this problem has been intentionally left blank)
VI. Montgomery and Vaughan, Section 4.2, p. 119, \#2 and 3. Hint: a sum of the form $\sum_{y}\left|\sum_{z} \cdots\right|^{2}$ can be written as a triple sum $\sum_{y}\left(\sum_{z_{1}} \cdots\right) \overline{\left(\sum_{z_{2}} \cdots\right)}$.
VII. Montgomery and Vaughan, Section 4.2, pp. 119-120, \#4 and 5
VIII. Let χ denote a non-principal Dirichlet character.
(a) Define $S_{\chi}(x)=\sum_{n \leq x} \chi(n)$. Prove that $S_{\chi}(x)<_{\chi} 1$. Hint: use the periodicity of χ. (b) Montgomery and Vaughan, Section 4.3, p. 127, \#2
IX. Montgomery and Vaughan, Section 4.3, pp. 128-129, \#5(f). You may use the results from Section 4.3 (state what you're using); if you want to use anything from \#5(a)-(e), you should prove it.
X. (this problem has been intentionally left blank)
XI. Montgomery and Vaughan, Section 9.1, pp. 285-286, \#6
XII. For every finite abelian group G, show that there exist infinitely integers n for which G is isomorphic to a subgroup of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.

