Math 539 Homework #3

due Friday, February 12, 2010 at the beginning of class

I. Suppose that $1 \le a \le q$ and (a, q) = 1. Prove that

$$\sum_{\substack{p \le x \\ \equiv a \pmod{q}}} \frac{1}{p} \ll \frac{1}{a} + \frac{\log \log x}{\phi(q)}$$

and that the term $\frac{1}{a}$ can be omitted if *a* is not a prime. The \ll -constant should be absolute (that is, independent of *a* and *q*). Hint: use partial summation and the Brun-Titchmarsh inequality.

II. Let $q \in \mathbb{N}$, let f and g be two real-valued functions defined on $\mathbb{Z}/q\mathbb{Z}$, and let g_r be defined by $g_r(n) = g(-n)$. Let $f \star g$ (not to be confused with the Dirichlet convolution $f \star g$ of two arithmetic functions) denote the function defined on $\mathbb{Z}/q\mathbb{Z}$ by

$$(f \star g)(n) = \frac{1}{q} \sum_{a \pmod{q}} f(a)g(n-a).$$

- (a) Prove that $\widehat{f}_r(k) = \overline{\widehat{f}(k)}$.
- (b) Prove that $\widehat{(f \star g)}(k) = \widehat{f}(k)\widehat{g}(k)$.
- (c) Define $h = f \star (f + f_r)$. Prove that $\hat{h}(k)$ has nonnegative real part for every $k \in \mathbb{Z}/q\mathbb{Z}$.
- III. Let p be a prime, and let δ denote the characteristic function of the set of integers that are primitive roots (mod p).
 - (a) Explain why we immediately know that there exist constants c_{χ} such that $\delta(n) = \sum_{\chi \pmod{p}} c_{\chi}\chi(n)$ for every integer n.
 - (b) In the notation of part (a), prove that $c_{\chi} = \frac{1}{p-1} \sum_{g} \chi(g)$, where the sum is taken over all primitive roots $g \pmod{p}$. Note: I do mean $\chi(g)$, not $\overline{\chi(g)}$.
 - (c) BONUS: Prove that if χ has order b in the character group (mod p), then $c_{\chi} = \frac{\phi(p-1)}{p-1} \frac{\mu(b)}{\phi(b)}$.
- IV. (a) Write down all Dirichlet characters to the modulus 15; to the modulus 16. Indicate which of them are primitive characters.
 - (b) Montgomery and Vaughan, Section 9.1, p. 285, #5
- V. (this problem has been intentionally left blank)
- VI. Montgomery and Vaughan, Section 4.2, p. 119, #2 and 3. Hint: a sum of the form $\sum_{y} |\sum_{z} \cdots|^2$ can be written as a triple sum $\sum_{y} (\sum_{z_1} \cdots) \overline{(\sum_{z_2} \cdots)}$.
- VII. Montgomery and Vaughan, Section 4.2, pp. 119-120, #4 and 5

(continued on next page)

- VIII. Let χ denote a non-principal Dirichlet character.
 - (a) Define $S_{\chi}(x) = \sum_{n \leq x} \chi(n)$. Prove that $S_{\chi}(x) \ll_{\chi} 1$. Hint: use the periodicity of χ . (b) Montgomery and Vaughan, Section 4.3, p. 127, #2

 - IX. Montgomery and Vaughan, Section 4.3, pp. 128–129, #5(f). You may use the results from Section 4.3 (state what you're using); if you want to use anything from #5(a)-(e), you should prove it.
 - X. (this problem has been intentionally left blank)
 - XI. Montgomery and Vaughan, Section 9.1, pp. 285–286, #6
- XII. For every finite abelian group G, show that there exist infinitely integers n for which G is isomorphic to a subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.