Math 539 Homework #4

due Monday, March 15, 2010 at the beginning of class

I. Show that if $\sigma_c < \sigma_0 < 0$, then

$$\lim_{T \to \infty} \frac{1}{2\pi i} \int_{\sigma_0 - iT}^{\sigma_0 + iT} \alpha(s) \frac{x^s}{s} \, ds = -\sum_{n > x}' a_n.$$

(Hint: start by adapting equation (5.3) to the case where $\sigma_0 < 0$, then use the method of proof of Theorem 5.1.) This problem was originally Montgomery and Vaughan, Section 5.1, p. 145, #1, but there was a negative sign missing.

- II. Show that it is necessary to invoke a smaller radius r in Jensen's inequality, in the following sense: Suppose that f is analytic on the ball $B_R = \{z \in \mathbb{C} : |z| \le R\}$, with $f(0) \ne 0$ and $|f(z)| \le M$ in B_R . Show by example that *it is not necessarily true* that the number of zeros of f in B_R is $\ll_R \log (M/|f(0)|)$. (Hint: consider Blaschke products).
- III. Montgomery and Vaughan, Section 6.1, p. 176, #4
- IV. Assuming that $\theta(x) = x + O(x \exp(-c\sqrt{\log x}))$ for some positive constant *c*, prove by partial summation that $\pi(x) = \operatorname{li}(x) + O(x \exp(-c\sqrt{\log x}))$ for the same *c*.
- V. Montgomery and Vaughan, Section 6.2, p. 182, #1 and 2
- VI. Let p_n denote the *n*th prime number. Using the Prime Number Theorem, prove that

$$p_n = n \log n + n \log \log n - n + O\left(\frac{n \log \log n}{\log n}\right)$$

- VII. Montgomery and Vaughan, Section 6.2, p. 184, #11(b)
- VIII. Montgomery and Vaughan, Section 6.2, p. 185, #16(c)
 - IX. (a) By dividing the Laurent expensions of $\zeta'(s+1)$ and $\zeta(s+1)$, or otherwise, show that

$$\frac{\zeta'(s+1)}{\zeta(s+1)} = -\frac{1}{s} + C_0 + O(s)$$

near s = 0, where C_0 is Euler's constant.

- (b) Montgomery and Vaughan, Section 6.2, p. 182, #4
- X. Prove that

$$\sum_{n \le x} \phi(n) = \frac{3}{\pi^2} x^2 + O\left(x^2 \exp\left(-c\sqrt{\log x}\right)\right),$$

where c is a small positive constant.

(continued on next page)

XI. Let $k \ge 2$ be an integer, and let $d_k(n)$ be the generalized divisor function (so that $d_2 = d$). Give a heuristic argument that there exists a polynomial $P_k(x)$ with real coefficients, of degree k - 1 with leading coefficient 1/(k - 1)!, such that

$$\sum_{n \le x} d_k(n) = x P_k(\log x) + o(x).$$

("Give a heuristic argument" means you can ignore all error terms along the way.)

- XII. Define $F(s) = \sum_{n=1}^{\infty} \phi(n)^{-s}$. (a) Show that F(s) is analytic on the right half-plane $\sigma > 1$.
 - (b) Show that $F(s) = \zeta(s)Q(s)$ for $\sigma > 1$, where where

$$Q(s) = \prod_{p} \left(1 + (p-1)^{-s} - p^{-s} \right).$$

- (c) Show that for any constant $0 < \varepsilon < 1$, the product defining Q(s) converges to an analytic function on the right half-plane $\sigma \geq \varepsilon$ that is uniformly bounded on that half-plane.
- (d) Let f(m) be the number of positive integers n such that $\phi(n) = m$. Show that F(s) = $\sum_{m=1}^{\infty} f(m) m^{-s}.$
- (e) Give a heuristic argument that

$$\#\{n \in \mathbb{N} \colon \phi(n) \le x\} \sim \frac{\zeta(2)\zeta(3)}{\zeta(6)}x.$$

Why would part (c) of this problem be relevant if you were working through all the details to make your heuristic argument rigorous?