Math 539 Homework \#4

due Monday, March 15, 2010 at the beginning of class
I. Show that if $\sigma_{c}<\sigma_{0}<0$, then

$$
\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \alpha(s) \frac{x^{s}}{s} d s=-\sum_{n>x}^{\prime} a_{n} .
$$

(Hint: start by adapting equation (5.3) to the case where $\sigma_{0}<0$, then use the method of proof of Theorem 5.1.) This problem was originally Montgomery and Vaughan, Section 5.1, p. 145, \#1, but there was a negative sign missing.
II. Show that it is necessary to invoke a smaller radius r in Jensen's inequality, in the following sense: Suppose that f is analytic on the ball $B_{R}=\{z \in \mathbb{C}:|z| \leq R\}$, with $f(0) \neq 0$ and $|f(z)| \leq M$ in B_{R}. Show by example that it is not necessarily true that the number of zeros of f in B_{R} is $<_{R} \log (M /|f(0)|)$. (Hint: consider Blaschke products).
III. Montgomery and Vaughan, Section 6.1, p. 176, \#4
IV. Assuming that $\theta(x)=x+O(x \exp (-c \sqrt{\log x}))$ for some positive constant c, prove by partial summation that $\pi(x)=\operatorname{li}(x)+O(x \exp (-c \sqrt{\log x}))$ for the same c.
V. Montgomery and Vaughan, Section 6.2, p. 182, \#1 and 2
VI. Let p_{n} denote the nth prime number. Using the Prime Number Theorem, prove that

$$
p_{n}=n \log n+n \log \log n-n+O\left(\frac{n \log \log n}{\log n}\right)
$$

VII. Montgomery and Vaughan, Section 6.2, p. 184, \#11(b)
VIII. Montgomery and Vaughan, Section 6.2, p. 185, \#16(c)
IX. (a) By dividing the Laurent expensions of $\zeta^{\prime}(s+1)$ and $\zeta(s+1)$, or otherwise, show that

$$
\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}=-\frac{1}{s}+C_{0}+O(s)
$$

near $s=0$, where C_{0} is Euler's constant.
(b) Montgomery and Vaughan, Section 6.2, p. 182, \#4
X. Prove that

$$
\sum_{n \leq x} \phi(n)=\frac{3}{\pi^{2}} x^{2}+O\left(x^{2} \exp (-c \sqrt{\log x})\right)
$$

where c is a small positive constant.
XI. Let $k \geq 2$ be an integer, and let $d_{k}(n)$ be the generalized divisor function (so that $d_{2}=d$). Give a heuristic argument that there exists a polynomial $P_{k}(x)$ with real coefficients, of degree $k-1$ with leading coefficient $1 /(k-1)$!, such that

$$
\sum_{n \leq x} d_{k}(n)=x P_{k}(\log x)+o(x)
$$

("Give a heuristic argument" means you can ignore all error terms along the way.)
XII. Define $F(s)=\sum_{n=1}^{\infty} \phi(n)^{-s}$.
(a) Show that $F(s)$ is analytic on the right half-plane $\sigma>1$.
(b) Show that $F(s)=\zeta(s) Q(s)$ for $\sigma>1$, where where

$$
Q(s)=\prod_{p}\left(1+(p-1)^{-s}-p^{-s}\right)
$$

(c) Show that for any constant $0<\varepsilon<1$, the product defining $Q(s)$ converges to an analytic function on the right half-plane $\sigma \geq \varepsilon$ that is uniformly bounded on that half-plane.
(d) Let $f(m)$ be the number of positive integers n such that $\phi(n)=m$. Show that $F(s)=$ $\sum_{m=1}^{\infty} f(m) m^{-s}$.
(e) Give a heuristic argument that

$$
\#\{n \in \mathbb{N}: \phi(n) \leq x\} \sim \frac{\zeta(2) \zeta(3)}{\zeta(6)} x
$$

Why would part (c) of this problem be relevant if you were working through all the details to make your heuristic argument rigorous?

